27 Ağustos 2009 Perşembe

Çarpım Tablosu Oyunu (2. ve 3.sınıf ağırlıklı)




Özellikle ilköğretim 2. ve 3.sınıf öğrencileri için çarpım tablosunu eğlenceli bir biçimde öğretmeyi amaçlayan güzel bir program.

İNDİR:
http://www.sorubak.com/download.php?id=16119

Devamı Burada!!!

25 Ağustos 2009 Salı

Matematik Yapboz 1.Kademe




İlköğretim 1.kademe (özellikle 2.,3. sınıf) öğrencileri için eğlenceli olabilcek bir yap boz oyunu..

İNDİR:
http://www.upload.gen.tr/d.php/s6/ffsappjf/matematikyapboz_1.kademe.rar.html

Rar şifresi:matematikyurdu

Devamı Burada!!!

Matematik-Geometri Yaprak Test

Matematik ve Geometri ile ilgili birkaç test..

Geometri yaprak testleri

İNDİR:
http://rapidshare.com/files/4625186/eksen2geo.rar


FEM yaprak testleri ilköğretim i_in, oks, 2002-2003

İNDİR:
http://rapidshare.com/files/9959800/FemGeo200203.rar


Kültür Geometri Yaprak testleri 2002-2003

İNDİR:
http://rapidshare.com/files/3901804/Kultur-Geo_0203.rar
Devamı Burada!!!

14 Ağustos 2009 Cuma

Asal sayıların gizemi ve Riemann Varsayımı




Matematiğin neresine bakarsanız bakın, derine indiğinizde karşınıza tamsayılar ve onların kuramı olan sayılar kuramı (yb. “number theory”) çıkacak. İki yazı önce Eğitimbilim dergisinde [Ocak 2006] tamsayıların hem riyâziyenin, hem de doğa bilimlerinin ortak temel taşları olduğundan biraz bahsetmiştim. Artı işaretli tamsayılar, yâni 1, 2, 3, … diye giden doğal sayılar ve onları (aşağıda göreceğimiz gibi) oluşturan asal sayılara etraflıca hele bir bakalım; neler yok neler orada.

Biliyorsunuz “asal sayı, p” başka doğal sayılarla tam olarak bölünemeyen bir doğal sayıdır; ({p}= 1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37,…). Bir eksen üzerinde sıfırdan sonsuza dek giden doğal sayılar arasına serpiştirilmiş asal sayılar var. Daha baştan bu asal sayıların gizemi insanı büyülüyor. Birinci soru: p’lerden kaç tane var? Belli bir adet mi, sonsuz tane mi? Asalların sonsuz adet olduğu daha M.Ö. 300’de Öklid’ce ispatlanmıştı (çok önceki Sümerler de belki biliyorlardı). Yakın zamana dek çeşitli ispatlar da yapıldı. [Bunların yedisi için Bkz. Matematik Dünyası, (Güz 2005 sayısı, sf.62-64 ve 2005-I sayısı, sf. 84)].

İkinci, ve hâlâ cevabı bulunamamış soru:

Tamsayılar ekseni üzerinde asal sayıların dağılımı nedir? Doğal sayılar arttıkça aralarında asallar belli bir kurala göre mi geliyorlar? Meselâ, artarak giden asal sayıların 50. sini bulduğumuzda 51., 52., vb. nin hangi asal sayılar olacağını önceden kestirebilir miyiz? Peki bir dağılım/dizilim kuralı bulamıyorsak, acaba dağılım matematik (ve fizik) anlamında rasgele mi (yb. “random” mı)? Aradan 2300 veya fazla yıl geçmesine, ve nice matematikçilerin uğraşmasına rağmen, bu paragrafımızdaki soruların cevabı hâlâ “hayır” veya bilinmiyor.

1960’lara, yâni bilgisayar çağına kadar bilinen en büyük asal sayıyı bulmak gazete haberi oluyordu, ama artık, hesapların büyük olmasına rağmen bu, havadis sayılmıyor. Çok büyük bilgisayarlarla, deneye sınaya, milyarlarca asal sayı bulundu. Ama hâlâ asal sayıların dağılım/dizilim kuralı bulunamadı. Bu, riyâziyenin çözülememiş en temel ve en büyük meselesi olmaya devam ediyor. Kesin sonuca, keskin bir ‘anasav’a (teoreme) ulaşılamadıysa da bilinen bazı şeyler var: Euler’in, Gauss’un buldukları ve Riemann’ın 150 yıldır ispatlanamamış, ama çürütülememiş de olan varsayımı (yb. “hipotezi”). Riemann Varsayımı’nı ispatlayabilene Clay Vakfı’nın koyduğu bir milyon dolarlık ödül duruyor. [Gerçi böyle derin matematikler, para düşünerek yapılamaz; ancak âdetâ tasavvufî olan büyük bir matematik aşkı, tutkusuyla olur.]

Doğal sayılar iki çeşit: i) Asallar, ii) Asal olmayanlar ki, bunlara ‘bileşik’ sayılar da diyebiliriz, çünkü, Eski Çağ’dan beri bilindiği üzere asal olmayan herhangi bir doğal sayı yalnızca tek bir biçimde, belirli asalların çarpımından ibârettir. Örn. 720 sayısı 4 adet 2, iki adet 3, ve bir tane 5’in çarpımından oluşur, yâni 720 = 24 x 32 x 5. (Sâdece bu asal çarpanlar ‘bileşik sayı’ 720’yi verir.) Bu, “aritmetiğin temel ‘anasav’ı (teoremi)”. Bazıları, kimyaya teşbihle, asal sayıları ögeciklere (atomlara), bileşik doğal sayıları ise özdeciklere (moleküllere) benzetiyorlar; şu farkla ki kararlı ögecik cinsinden 92 adet (çabuk bozunur, yapaylarıyla birlikte 105 kadar) var, asal sayılar ise sonsuz miktarda. [Benim yeni nicem (kuvantum) kimyası (VIF) kuramımla kimyaya bakılırsa, teşbihin daha da ayrıntılı (ve sayılar kuramına dayanacak) olması muhtemel. (Bkz. E. Çaykara’nın “Oktay Sinanoğlu kitabı”(T. İş Bankası Kültür Yayınevi, İst., 25.baskı 2006))]

Asalların dağılımı/dizilimi hakkında bazı bilinenler: a) 2 ve 3 hâriç asallar birbirine komşu olmazlar. Ama, aralarında tek bir bileşik sayı olan asal sayı çiftlerinden sonsuz adet çift olduğu sanılıyor. Bu, “ikiz asal varsayımı”nın da henüz ispatı yok. b) Sayılar büyüdükçe asallar-arası asalsız boşluk da büyüyor. c) Gelelim C.F. Gauss’un buluşuna:

1801’de Gauss dedi ki, asalların dağılımını bilmesek de, belli bir doğal sayı (n)’e kadar kaç adet asal olacağını bulalım. Ve şu formülü sayılara bakarak buldu: n? p asalları sayısı, n sonsuza yaklaşırken (n/ ln n) ‘e yaklaşır. (Burada (ln) , e= 2.718… tabanlı logaritma) [‘logaritma’ lâfı ise büyük Türk matematikçisi, cebiri keşfeden , Türkistanlı (Harzemli) Harezmî’nin adının Batı’daki bozuk telâffuzundan geliyor]. Dolayısıyla n büyüdükçe asallar sayısı, (n)’e nispetle azalır, ama hiçbir zaman sıfır olmaz.

Gauss’un formülü bir tahmindi, ama 100 yıl sonra Hadamard ve de ayrıca C. de la Vallée-Poussin tarafından ispatlanıp “asalların sayısı anasavı (teoremi)” adını aldı. Tabii gene de formül ancak n sonsuza yaklaştıkça doğru. Herhangi bir (n)’de belli bir yüzde hâtâ var. Bu iş fen veya mühendislik olsa uygulamada idâre edebilir, ama saf matematikte kesin ispatlar, kesin anasavlar olmalı. Ve 150 yıl önce Riemann bu hâtâ miktarını kesinkes bulmağa karar verdi, çünkü öyle bir sonuç, asallar çok temel nesneler olduklarından, matematiğin birçok dalını da etkileyecekti. (n) bir milyon, milyar mertebesine vardığında Gauss’un formülü %3 hâtâ veriyor. Riemann önce bu hâtâyı düşürdü, hattâ %1’in çok altına. Ama hâlâ kesin bir sonuç, temel bir anasav yoktu. Derken, Riemann, çok önceki ve çok ilginç Euler’in bir formülünü karmaşık sayılara genişleterek “Riemann Varsayımı”nı ortaya attı, hâlâ ispatlanamamış büyük varsayım, matematiğin çeşitli dalları, şimdi de kuramsal fiziğin temelleri içinde önemli hâle gelmiş varsayım. Varsayımın ispatı için günümüzde bambaşka, değişik yönlerden uğraşılıyor. Yaklaşımları, durumu, varsayımın içeriğini bir dahaki yazımda ele alacağım inşallah.

Kaynak:
Prof. Dr. Oktay Sinanoğlu

Devamı Burada!!!

Matematiksel Sanat




Önyargılarımızı bir tarafa bırakıp matematiğin insanlara sıkıcı görünme nedenini açıklamaya çalışalım. Basit bir neden olarak matematik dünyasını kolay algılayamadığımızı ve hissedemediğimizi söyleyebiliriz. Bunun nedeni ise, matematiğin kendi yapısı ve bu yapıyı ören profesyonel matematikçilerin tavrıdır. Matematikçiler ayrı bir dünyada gibidirler, olayları algılayışları ve ifade edişleri farklıdır.

Bu ifadenin gündelik yaşam dilinden farklı olmasını yadırgamak yersiz olur. Matematikteki soyutluk, beş duyumuz aracılığıyla edindiğimiz bilgileri anlamlandırmakta ve aktarmakta kullandığımız dildeki görece anlatımlardan kurtulmak için gereklidir. Matematik evrensel bir dil olma niteliğini bu şekilde kazanmaktadır. Matematik yeterince bilgi edinmeden ve çalışmadan anlaşılamaz.

Bireyler olarak o kadar küçüğüz ki içine doğduğumuz dünyanın sadece küçük bir parçasını algılayabiliyoruz. Bu dünya bizim anlama kapasitemizden büyüktür ve doğal olarak tüm detayları anlamamız imkansızdır. Ama matematikle birlikte bu koca dünyanın nasıl birşey olduğu hakkında genel bir duyuma sahip olabiliriz. Tanımlamayı, analiz etmeyi, çıkarımlar yapmayı, dizgelemeyi, daha dolgun, anlamlı ve işlevsel düşünceler üretmeyi öğrenebiliriz. Böylece zekanın derinliklerinde ve sınırlarında gezinerek kendi sınırlarımızı zorlamak ve genişletmek imkanı buluruz.
Mathart, matematiksel sanat, karşımıza çıktığı biçimiyle, matematikçinin içinde yaşadığı dünyayı profesyonel matematikçilerin çemberi dışına taşımak için yapılan güçlü bir girişimdir. Matematikle sanatın ilişkilendirildiği makalelerde, Rönesans dönemi sanatçılarının çalışmaları, özellikle altın oran ve onun geleneksel sanat tekniklerinde kullanılışı, doğadaki geometri, fraktallar ve bunların şaşırtıcı görünümleri ve elbette matematik ve müzik ilişkisi konularından bahsedilir. Fakat matematiksel sanat farklı bir önerme olarak karşımıza çıkmakta. Çıkış noktası, kuramsal bağlamı ve yolu matematiksel; tekniği ve ürünü sanatsal olan matematiksel sanat ile soyut kavramlar ve düşünce formları fiziksel materyallere ve görünümlere dönüşmektedir. Böylece bir yandan matematikçiler "diğerleriyle" farklı bir platformda iletişim kurabilme, öte yandan yeterli bilgiye sahip olmayan insanlar, matematikçilerin kafasının içinde olan biteni hissedebilirle şansı yakalamaktadırlar, ilk bakışta soğuk ve inorganik görünen matematiksel sanat, Heleman R. P. Ferguson, Anatolii T. Fomenko'nun çalışmalarında sıcak ve canlıdır. Ünlü matematikçi Fomenko, bize matematik dünyasından enstantaneler taşırken, sanatçı Ferguson heykelleriyle matematiksel düşünceyi yüceltir. Yeni bir bakış açısıyla M.C. Escher'in eserlerini de bu konuya dahil edebiliriz. Ne de olsa Escher kendini matematikçilere daha yakın hissetmiştir. Bu insanlar bize matematiksel düşüncenin ve sanatsal becerinin doğurduğu etkileyici sonuçların örneklerini vermektedirler. Gelin bu örnekleri inceleyen kısa bir gezintiye çıkalım.

Matematik Dünyasından Fotoğraflar:
İlk durağımızda ünlü Rus matematikçi Anatolii T. Fomenko'nun çalışmaları var. Özgeçmişinden anlaşıldığına göre Fomenko, tam bir harika çocuk ve öğrencilik yaşamı ödüller ve madalyalarla dolu. Matematik eğitimini Moskova Üniversitesi Mekanik ve Matematik Bölümü'nde tamamlayan matematikçinin başarılı akademik kariyeri boyunca 140'dan fazla yayınlanmış makalesi ve 16'yı aşan kitabı bulunmaktadır. Böylesi güçlü bir matematikçi kimliğin yanında resim, amatör bir ressam olan annesinin etkisiyle küçük yaşlardan beri sürdürülen bir uğraş olarak belirir. Matematiği hep çizerek ifade etmeye çalışan Fomenko bunun nedenini açıkça belirtir:

" ... Ben bir matematikçiyim. Çizimlerim ilgi çekici matematik dünyasının fotoğraflarına benziyorlar. Benim için önemli olan sanatçı olmak değil ama bu dünyanın görüntülerini sunmaktır. Böylece diğer insanlar da bu dünyaya katılabilirler".

Fomenko ileTopoloji:
Fomenko daha çok matematikteki çalışma alanı olan topolojik nesneleri ve olayları resmeder. Topoloji çağdaş matematiğin en hızlı gelişen ve yaygınlaşan alanlarından biri olarak bilinir. Kabaca "esnek madde geometrisi" olarak tanımlanabilecek topolojide sadece noktalar kümesi anlamına gelmeyen ve esnek bir maddeden yapıldığı düşlenen objeler deforme edilerek birbirlerine dönüştürülebilir. Yırtmadan ve kesmeden, ezip büzerek veya çekip genişleterek yapılan bu dönüşümü bir fonksiyon olarak düşünebiliriz ve buna da homeomorfizm denir. Bir karenin daireye, kübün pramite, bir torusun kahve fincanına, daha da ilginci bir noktası atılmış bir kürenin reel düzleme (R2) homeomorfik olması gibi...

Topoloji öğrenmek insanın algısını biraz farklılaştırıyor çünkü konu olan nesneler ve bunların elde edilme yöntemleri olağan dışı özellikler gösteriyor. Tecrübe etmek için Şekil 2'de görünen dikdörtgenleri ok yönünde yapıştırın. Fiziksel anlamda bu işlemleri sonuçlandırmak genelde mümkün değildir. Bu yüzden düş gücünüzü yardıma çağırmanız gerekecek. Bu yöntemle oluşan Möbius Şeridi tek tuzlu, içi dışı olmayan bir nesnedir. Yani içi ve dışı aynı yüzeydir. Bir diğeri ünlü Klein Şişesi, iki Möbius Şeridi'nin yapıştırılmasıyla elde edilir, iki Möbius Şeridi kenarlarından yapıştırılabilir mi? Deneyin!! Kelin Şişesi için şekilde tariflenen yapıştırma yönüne dikkat edilirse şişenin kendini kesmemesi gerektiği görülebilir. Fakat bunu üç boyutlu uzayda göstermek imkansızdır. Klein şişesi dört boyutlu içi dışı olmayan bir nesnedir. Çizimde kendini keser gibi görüldüğü için algılaması zor olan bu durumu dikkatlice düşününce siz de kavrayabilirsiniz. Dördüncü boyutta bu şişeye su doldurmak oldukça eğlenceli olurdu.

Matematik dünyasını fotoğraflamak:
Tahmin edeceğiniz üzere topoloji, matematikçilerin oyun düşkünlüğüyle örtüşen eğlenceli bir uğraş ve bir yığın görsel malzemeyle dolu. Tabi ki matematikçiler için ası! heyecan verici olan bu oyunların içindeki teori. Fomenko ise doğası kolay anlaşılmayan bu dünyayı resmetmeye çalışıyor. Resim yaparken bir yolculuğa çıktığını ve başlangıçta ne olacağını hiç bilmediğini söyleyen sanatçı, yol boyunca edindiği izlenimleri, tecrübeleri aktarmak istiyor ve bunu fotoğraf çekmeye benzetiyor. Gördüklerini ve hissettiklerini belgelemek için çiziyor. Resimlerinde kurguladığı mekanlarda Rus masallarından, mitolojiden ve antik çağın öykülerinden faydalanıyor. Fomenko'nun resimlerinde mekanlar alabildiğine büyük, insanlar alabildiğine küçük görünüyor Fomenko bu hissi şöyle vurguluyor:

" Biz şu öğrenen adamlar, tahmin edemeyeceğimiz şeylerin her an olabileceği, fırtınalı bir dünyada yaşıyoruz"
Resimlerin kaotik yapısı, izleyiciyi zor durumda bırakacak kadar karışık birçok detayla dolu olması bu fikre dayanıyor olmalı. Bizler teknoloji çağının çocukları bildiklerimizle ne kadar çok övünürüz, oysa bilmediklerimizin fazlalığı merakımızı kamçılamalı.

Müzik ve matematik
Müzik ve matematik ilişkisi Fomenkonun resimlerinde de gündemdedir. Aktif olarak Moskova Üniversitesi Topaz grubunda müzik yapmış olan Fomenko'nun resimleriyle müzik arasında önemli bağlar bulunur. Fomenko'ya göre müzik ve matematiğin temel motifi sonsuzluktur:
" Profesyonel matematikçiler sürekli olarak sonsuzluk kavramıyla ilgilenirler. Bu yüzden tam olarak tanımlanamasa da sonsuza ait belirgin ve güçlü bir hisse sahiptirler. Pek açıkça görülmese de bu durum müzik için de böyledir. Her iki alan da ortak ve yüksek bir soyutlama düzeyine sahiptir." (4)
Fomenko'nun görüntülediği dünyada onun izlenimlerine tanık olmak pek kolay değil. Oldukça detaylı, karışık iç içe geçmiş yapılar; koyu keskin gölgeler, ilginç teorik isimler, zor kavramlar... Sanatçının kendisinin de bu resimlerin belli bir düzeyde matematik bilmeden anlaşılamayacağını itiraf etmektedir. Yine de garip bir dünyadan gelmiş fantastik öyküler anlatan bu "fotoğrafların" izleyici üstünde bırakacağı etkiyi kim tayin edebilir!

Bronz ve Taş Üstüne Kuramlar
İkinci durağımız Amerikalı sanatçı Heleman R. P. Ferguson. Sanat eğitimini resim ve heykel üzerine Hamilton Koleji'nde yapan Ferguson, matematik eğitimini Washington Üniversite'sinde almış. Bilgisayar destekli üretim ve bunun için yazılacak algoritmalar üzerine araştırmalar yapmış. Yaşamını heykel yaparak sürdüren sanatçı, matematiğin kendine özel estetik bir tarafı olduğuna inanıyor. Ferguson "Matematiğin kaynağı, enerjisi, zekası, sofistike yapısı estetik sanat eserlerinin yaratılışını geliştirmek üzere kullanılırsa ne olur?" sorusunun cevabını arar. Sanatçının haziran 1991'de Newyork Bilimler Akademisi'nde açılan "Bornz ve Taş Üstüne 16 Kuram" adlı sergisi bu soruya bir cevap niteliği taşıdığı söylenebilir. Ferguson yaşamsal görünümlerin tasarım dili olarak kabul ettiği matematiği, bir sanat ve bilim formunda heykelleştirirken, bize de bu formlarda zihinsel güzelliği duyumsatarak önyargılarımızdan kurtulmamızı sağlamayı amaçlamaktadır. Bu misyonu şöyle ifade eder:

" Güzellik ve gerçek: heykellerimin birleştirip yücelttiği iki olgu. Ruhu harekete geçiren heykellerin güzelliği ve zihni harekete geçiren matematiksel gerçek. Benim heykellerimin yaptığı bu."(2)
Matematiksel estetik Umbilic Torus Nist NC heykelinde vücut bulmuştur. Heykelin formunda hemen okunabilecek süreklilik, ilginç dokusu, antik rengi, Ferguson'un yaratıcılığı ve yetkinliği hakkında ilk fikirleri vermektedir. Heykelin en ilginç yanı ise onun yaratılış sürecidir. Bilgisayar destekli üretim tekniklerinin uygulandığı heykel formu

Hilbert Uzay Doldurma Eğrisi'nin inşası
ax3+bx2y+cxy2+dy3 kübik reelbinom denkleminden elde edilir. Heykelin formu ve doku belirlendikten sonra gerekli koordinatlar hesaplanarak bilgisayara aktarılır ve sayısal kontrollü oyma makinası ile pozitif çıktı alınır. Bu pozitif çıktı geleneksel heykel teknikleriyle bronza dökülerek son halini alır.

Hilbert Uzay Doldurma Eğrisi'nin inşası
Heykelin formu yanında dokusu da ilginç bir konu olan Peano-Hilbert uzay doldurma eğrisinin 5. dereceden uygulanması ile elde edilir (Şekil 3). Uzay doldurma eğrisi bir doğrudan bir düzleme tanımlanan bir fonksiyon olarak düşünülebilir. Şekilde görüldüğü gibi eğri sürekli tekrarlanan bir işlemle inşa edilmektedir. Bu işlem sonsuz çoklukta tekrarlandığında eğrinin bir noktadan bir ve sadece bir kere geçerek düzlemi dolduracağı ispatlanabilir. Tek boyutlu eğri giderek iki boyutlu düzleme yakınsamaktadır ve bu da bizi çelişkiye götürür. Bu ve buna benzer eğriler bugün fraktallar olarak bildiğimiz yapıların temelini oluşturmuşlardır. Heykel doğduğu kuramdan daha fazlasını aktarıyor:
" Bir heykel nüansa, gizeme, sese, sıcaklığa, tarihe, birkaç anlam düzeyine ve kendi orijininin tanımladığından daha fazla referansa sahip olabilir. Ama benim yaptığım sadece heykel değil. Ben soyut matematiğin tahmin edilemeyen fiziksel formlara dönüşme macerası ile ilgileniyorum."(2)
Ferguso'un heykellerinin yarattığı heyecan sadece formların başarısından değil, onların gerisindeki ilginç kuramlardan doğuyor. Eserlerindeki yalınlık, süreklilik, yumuşaklık; bronzun, taşın ve kuramın soğukluğuna karşı duruyor.

Tanıdık Bir Sima: M.C. Escher
Son olarak MC Escher'in galerisine uğruyoruz. Bilimle ilgilenen ve popüler bilim yayınlarını takip edenler Escher'i ve onun eserlerini yakından tanır. Escher'in farklı kişiliği bu ilgiyi hak ediyor doğrusu. Sanatçı hakkında söylenegelenleri yinelemekten çekinmekle birlikte, onu gündeme getirmemizin nedeni eserlerinin matematiğin görselleşmesi konusunda verilen ilk örnekler olduğunu düşünmemiz. Sanatçının kendisi de matematiğe yakınlığını şöyle ifade etmiştir:

" Bizi saran belirsizlikleri göğüsleyerek ve yaptığım gözlemleri analiz ederek matematiğin egemen olduğu alana eriştim. Bilim eğitiminden yoksun olmama rağmen kendimi sanatçı arkadaşlarımdan daha çok matematikçilere yakın hissettim".(1)
Sanatçının çalışmalarını birer ilk yada önder olarak kabul edebiliriz. Yine de Escher'in matematiksel bir kaygıyla yola çıktığını söylemek yanlış olur. Sanatçı kurmak istediği dünyaları yaratabilmek için matematikten faydalanmıştır. Kısa ve duru bir bakışla yeniden gözden geçirirsek Escher'in işlerini birkaç grupta ele alabiliriz:

Düzlemi düzenli olarak bölmek:
Bu teknikle yaptığı resimlerinde sanatçı bir ya da birkaç motifi hiçbiri birbirinin üstüne gelmeyecek ve aralarında boşluk kalmayacak şekilde birbirlerini nasıl çevreleyebileceklerini araştırır. Bu yöntem matematikte düzlem doldurma problemi ile çakışır. Matematikçi daha global bir yaklaşımla bir düzlemde bulunan mozaik yapıdaki simetri gruplarını araştırıp tanımlamak ister. Escher bu işlemi çeşitli hayvan figürleri kullanarak fantastik bir şekilde icra eder. Bu grupta topladığımız çalışmaları arasında en etkileyici olanları hiperbolik düzlem kullandığı Circle Limit (Çember Limiti) serisidir. Hiperbolik düzlem Öklid olmayan geometrilere örnek olarak Poincare tarafından geliştirilmiştir (Şekil 4).

Metamorfozlar
Bu seride yüzey figür ilişkisi çarpıcı şekilde vurgulanırken, imkansız olan boyutlar arası yolculuk da resmedilir. Doğada değişim anlamına gelen metamorfozlarda, düzlemdeki düzenliliği bozmadan sürekli deforme edilen şekiller birbirine dönüşür, gece gündüze, balıklar kuşa evrilir.

Paradokslar
Escher'in en vurucu işleri paradoks (çelişki) ve sonsuzluk kavramını işlediği resimleridir. İmkansız figürleri kullanarak inşa ettiği dünyalar bizi çelişkiye götürür. Döngüsel paradoksları yaratmak için kurduğu hiyerarşik düzenlerde sürekli yukarı ya da aşağı hareket etseniz de, hiyerarşinin gereğine rağmen, yine başlangıç noktasına gelirsiniz. Bu gibi döngüler Bach'ın müziğinde de yer alır. Bach müziğini bestelerken kanonlar sayesinde kurduğu döngüler içinde notaların harflendirilme sisteminden yararlanarak kendi adını sonsuz kere zikrettirir. D.R. Hofstadler ünlü Escher Gödel ve Bach adlı kitabında bu üç şahsiyeti döngüsel paradokslarda buluşturur. Bu yüzyılın en önemli matematik makalelerinden birini yazan Gödel, matematiği dizgeleştirme çabalarının sonuç vermeyeceğini, kendi içinden çıkıp kendine dönen bir paradoksun varlığını göstererek kanıtlamıştı(5). Escher'in Resim Galerisi adlı eseri kabaca bu kanıtın görsel ifadesidir. Önemli bir teorem ve ilginç bir resim aynı anlatıma ulaşıyor!
Escher'in eserlerinin açıklığı, kolay okunurluğu, akıcı anlatımı, iyi kurgulanmış güçlü yapısı iz bırakıcıdır. Dikkatli bir göz sanatçının resimlerinde tanık olduğu gariplikleri kolay kolay unutmaz. Escher oldukça sofistike ve detaycı işçiliğiyle matematiğin örgüsüyle çakışır. Yaşamı süresince ve sonrasında çok tartışılmış bir sanatçı olan Escher, matematikçi olmasa da çalışmaları pek çok matematikçiyi etkilemektedir.

Matematik ve Sanat Üzerine
Matematikle sanat oldukça farklı olan iki alan olarak karşımızda. Malzemeleri, teknikleri, yöntemleri ve doğal olarak ürünleri farklı, ilk bakışta hemen göze çarpan ve rahatsızlık veren bu ayrılık, ortaklıkların varlığına engel değil. Matematik de sanat da, diğer bilimler gibi, insanın içine doğduğu ortamı ve bu ortam içinde kendine ne olup bitmekte olduğunu anlama çabası sonucu doğmuştur. Zaman zaman doğaya aykırı görünseler de iki alan da doğanın soyutlaması, yorumu hatta yeniden sunumudur. Sayılar denklemler bu halleriyle doğada yokturlar ama resimler ve heykeller gibi doğayı betimler ve düşüncemize yeniden sunarlar.

Mathart: Matematiksel sanat, matematiğin şaşırtıcı sonuçlarından biri (Yoksa sanatın şaşırtıcı sonuçlarından biri mi demeli? Sanatın kendisi zaten şaşırtıcı değil mi?) Bu sonucu karşımıza çıkaran kişiler matematiği yeni bir etkileşim atanına taşımak istiyorlar. Bu, sanatın etki alanıdır. Ne de olsa sanatın cazibesi daha çok kişiyi kendine çeker. Böylece daha çok insan matematiksel düşünceyi ve onun doğuracağı etkiyi paylaşabilir. Matematiksel sanat bu kendine has savıyla merak edilmeye değer. Fomenko, Ferguson ve Escher'in çalışmalarını incelemek, matematiğe ilgi duyan herkes için keyifli bir öğreti süreci olmaya aday.

Kaynaklar:
1- Bool F.H... Escher Complete Graphic Work, Thames and Hudson, 1993
2- Cannon J.W., "Mathematics in Marble and Bronze: Sculptures of Heleman R.P. Ferguson", Mathematical Intelliger, cilt: 13, sayı: 1, kış 1991
3- Coxeter H.S.M, Escher: Art and Science, Elsevier Science Publishers, 1986
4- Fomenko A., Mathematical Inspirations, American Mathematical Society Press, 1990.
5- Hofstadler D.R, Gödel esher and Bach: The Eternal Golden Braid, Vintage Books Edition, 1980.
6- Kappraff J., Conecttons: The Geometric Bridge between Art and Sciences, Mc GrawHill Pub. Co., 1991.
7- Nargel E., Newman J.R., çev: Gözkan B., Gödel Kanıtlaması, Sarmal yayınevi, 1994.

Devamı Burada!!!

Bölünebilme Kuralları




2 ile Bölünebilme:
Bir sayının 2 ile tam olarak bölünebilmesi için, birler basamağının 0, 2, 4, 6, 8 sayılarından biri olması gerekir. Yani, her çift sayı 2 ile tam olarak bölünür. Bununla birlikte, tüm tek sayılar 2 ile bölündüğünde, kalan 1 olur.

3 ile Bölünebilme: Bir sayının 3 ile tam olarak bölünebilmesi için, sayının rakamları toplamının 3 veya 3 ün katları olması gerekir.

Bir sayının 3 e bölümünden kalan, rakamları toplamının 3 e bölümünden kalana eşittir.

4 ile Bölünebilme:

Bir sayının 4 ile tam olarak bölünebilmesi için, sayının son iki basamağının

00 veya 4 ün katları

olması gerekir. Bir sayının 4 ile bölümündeki kalan, sayının son iki basamağının 4 e bölümündeki kalana eşittir. Diğer taraftan, 4 ile tam olarak bölünebilen yıllar, artık yıl olarak isimlendirilir. Yani, artık yılların Şubat ayı 29 gün çeker. Dolayısıyla, 4 ile Bölünebilme, artık yılların bulunması kullanılabilir.

5 ile Bölünebilme:

Bir sayının 5 ile tam olarak bölünebilmesi için, sayının birler basamağının

0 veya 5

olması gerekir. Bir sayının 5 ile bölümündeki kalan, sayının birler basamağının 5 e bölümündeki kalana eşittir.

6 ile Bölünebilme:

Bir sayının 6 ile tam olarak bölünebilmesi için, bu sayının hem 3 ile hem de 2 ile tam olarak bölünmesi gerekir. Yani, 6 ile bölünebilen bir sayının hem çift sayı olması hem de rakamları toplamının 3 veya 3 ün katları olması gerekir.

7 ile Bölünebilme:

Bir sayının 7 ile tam olarak bölündüğünü tespit etmek için, sayının rakamlarının altına birler basamağından başlayarak (sağdan sola doğru)

a b c d e f

2 3 1 2 3 1

- +

sırasıyla ( 1 3 2 1 3 2 ...) yazılmalı ve şu hesap yapılmalıdır:

( 1.f + 3.e +2.d ) - ( 1.c + 3.b + 2.a ) = 7.k + m ( k, m: tamsayı)

Sonuç, 7 veya 7 nin katları ( m = 0 ) olursa, bu sayı 7 ile tam olarak bölünür. Şayet, m sıfırdan farklı bir tamsayı olursa, bu sayının 7 ile bölümünden kalan m olur. İşaretler de sağdan başlayarak sırasıyla her üçlü için

+, -, +, -, +, -, +, ...

şeklinde olmalıdır. Bu kurala, (132) kuralı adı verilmektedir.

8 ile Bölünebilme:

Bir sayının 8 ile bölünebilmesi için, sayının son üç basamağının

000 veya 8 in katı

olması gerekir. Bir sayının 8 ile bölümündeki kalan, sayının son üç basamağındaki sayının 8 e bölümündeki kalana eşittir.

9 ile Bölünebilme:

Bir sayının 9 ile tam olarak bölünebilmesi için, sayının rakamlarının toplamının 9 veya 9 un katları olması gerekir. Bir sayının 9 a bölümündeki kalan, sayının rakamlarının toplamının 9 a bölümündeki kalana eşittir.

10 ile Bölünebilme:

Bir sayının 10 ile tam olarak bölünebilmesi için, sayının birler basamağının sıfır olması gerekir. Bir sayının 10 a bölünmesiyle elde edilen kalan, sayının birler basamağındaki rakama eşittir.

11 ile Bölünebilme:

Bir sayının 11 ile tam olarak bölünebilmesi için, sayının rakamlarının altına birler basamağından başlayarak sırasıyla

+, -, +, -, ...

işaretleri yazılır, artılı gruplar kendi arasında ve eksili gruplar kendi arasında toplanır, genel toplamın da

0, 11 veya 11 in katları

olması gerekir. Bir sayının 11 ile bölümündeki kalan, artılı ve eksili gruplarının toplamının 11 e bölümündeki kalana eşittir.

12 ile Bölünebilme:

Bir sayının 12 ile bölünebilmesi için, bu sayının hem 3 ile hem de 4 ile tam olarak bölünmesi gerekir.

15 ile Bölünebilme:


Bir sayının 15 ile bölünebilmesi için, bu sayının hem 3 ile hem de 5 ile tam olarak bölünmesi gerekir.

18 ile Bölünebilme:

Bir sayının 18 ile bölünebilmesi için, bu sayının hem 2 ile hem de 9 ile tam olarak bölünmesi gerekir.

24 ile Bölünebilme:

Bir sayının 24 ile bölünebilmesi için, bu sayının hem 3 ile hem de 8 ile tam olarak bölünmesi gerekir.

25 ile Bölünebilme:

Bir sayının 25 ile tam olarak bölünebilmesi için, sayının son iki basamağının

00, 25, 50, 75

olması gerekir.

Herhangi bir sayı ile Bölünebilme:

a ve b aralarında asal sayı ve

x = a . b

olsun. Şayet, bir sayı hem a ya hem de b ye bölünüyorsa, bu sayı x e de tam olarak bölünür.

ÖRNEKLER

Örnek 1:

Rakamları farklı 5 basamaklı 9452X sayısının 2 ile bölünebilmesi için, X değerlerinin toplamı kaç olmalıdır?

Çözüm:

9452X sayısının 2 ile bölünebilmesi için, X in alabileceği değerler

0, 2, 4, 6, 8

olmalıdır. Oysa, bu sayının rakamlarının farklı olması istendiğinden, X rakamı 2 ile 4 olamaz. Dolayısıyla, X in alabileceği değerler

0, 6, 8

dir. Bu değerlerin toplamı

0 + 6 + 8 = 14

olur.

Örnek 2:

5 basamaklı 1582A sayısının 3 ile bölünebilmesini sağlayan A değerlerinin toplamı kaçtır?

Çözüm:

Bir sayının 3 ile bölünebilmesi için, sayının rakamları toplamının 3 ün katları olması gerektiğinden,

1 + 5 + 8 + 2 + A = 3 . k

olmalıdır. Buradan,

16 + A = 3 . k

olur. Böylece, A

2, 5, 8

değerlerini alması gerekir. Dolayısıyla, bu değerlerin toplamı

2 + 5 + 8 = 15

olarak bulunur.

Örnek 3:

İki basamaklı mn sayısı 3 ile tam olarak bölünebilmektedir. Dört basamaklı 32mn sayısının 3 ile bölümünden kalan kaçtır?

Çözüm:

mn sayısı 3 ile tam olarak bölünebildiğine göre,

m + n = 3 . k

olması gerekir. O halde, 32mn sayısının 3 bölümünden kalan şöyle bulunur:

3 + 2 + m + n = 5 + ( m + n )

= 5 + 3 . k

= 3 + 2 + 3 . k

= 2 + 3 . k

Dolayısıyla, Kalan = 2 dir.
Örnek 4:

Dört basamaklı 152X sayısının 4 e bölümünden kalan 2 olduğuna göre, X in alabileceği değerler toplamı kaçtır?

Çözüm:

152X sayısının 4 e tam olarak bölünebilmesi için, sayının son iki basamağının yani 2X in, 4 ün katları olması gerekir. O halde, X,

0, 4, 8 ... (1)

değerlerini alırsa, 152X sayısı 4 e tam olarak bölünür. Kalanın 2 olması için, (1) nolu değerlere 2 ilave edilmelidir. Bu taktirde, X,

2, 6

değerlerini almalıdır. Dolayısıyla, bu değerlerin toplamı

2 + 6 = 8

olur.

Örnek 5:

666 + 5373

toplamının 4 e bölümünden kalan kaçtır?

Çözüm:

666 nın 4 e bölümünden kalan şöyle bulunur:

66 nın 4 e bölümünden kalana eşit olup, kalan 2 dir.

5373 ün 4 e bölümünden kalan şöyle bulunur:

73 ün 4 e bölümünden kalana eşit olup, kalan 1 dir.

Bu kalanlar toplanarak, toplamın kalanı

2 + 1 = 3

bulunur.

Örnek 6:

99999 . 23586 . 793423 . 458

çarpımının 5 e bölümünden kalan kaçtır?

Çözüm:

Bir sayının 5 e bölümünden kalanı bulmak için, birler basamağına bakılması gerekir ve birler basamağındaki rakamın 5 e bölümündeki kalana eşittir. Dolayısıyla,

99999 sayısının 5 e bölümünden kalan 2 dir.

23586 sayısının 5 e bölümünden kalan 1 dir.

793423 sayısının 5 e bölümünden kalan 3 tür.

458 sayısının 5 e bölümünden kalan 3 tür.

Bu kalanların çarpımı,

2 . 1 . 3 . 3 = 18

olur. 18 in 5 e bölümünden kalan ise, 3 tür.

Örnek 7:

Rakamları birbirinden farklı dört basamaklı 3m4n sayısı, 6 ile tam olarak bölündüğüne göre, m + n in en büyük değeri kaçtır?

Çözüm:

Bir sayının 6 ile tam olarak bölünebilmesi için, sayının hem 2 ile hem de 3 ile tam olarak bölünmesi gerekir.

3m4n sayısının 2 ye tam olarak bölünebilmesi için, n nin

0, 2, 4, 6, 8

olması gerekir. m + n nin en büyük olması için, n = 8 olmalıdır. Böylece, 3m4n sayısı,

3m48

olur. 3m48 sayısının, aynı zamanda, 3 e bölünmesi gerektiğinden,

3 + m + 4 + 8 = m + 3

olur ve böylece m, şu değerleri alabilir:

0, 3, 6, 9

m + n nin en büyük olması için, m = 9 alınmalıdır. Dolayısıyla, m = 9 ve n = 8 için, m + n nin en büyük değeri,

m + n = 9 + 8 = 17

olur.

Örnek 8:

Beş basamaklı m362m sayısı, 7 ile tam bölündüğüne göre, m nin alabileceği değerlerin toplamı kaçtır?

Çözüm:

(132) kuralını kullanmalıyız.

m 3 6 2 m = ( m.1 + 2.3 + 6.2 ) - ( 3.1 + m.3 ) = m + 6 + 12 - 3 - 3m = - 2m + 15

3 1 2 3 1

- +

- 2m + 15 = 7.k

Buradan m = 4 olur.

Örnek 9:

458028 sayısının 8 e bölümünden kalan kaçtır?

Çözüm:

Bir sayının 8 ile bölümünden kalanı bulmak için, sayının son üç basamağının 8 ile bölümünden kalanına bakılmalıdır. Dolayısıyla, 28 sayısının 8 ile bölümündeki kalanı bulmalıyız.

28 in 8 ile bölümünden kalan 4 tür.

O halde, 458028 sayısının 8 e bölümünden kalan, 4 tür.

Örnek 10:

10 basamaklı 4444444444 sayısının 9 ile bölümünden kalan kaçtır?

Çözüm:

Sayının rakamlarının toplamını alıp, 9 un katlarını atmalıyız.

Rakamların toplamı: 4 . 10 = 40 dır. Buradan, 4 + 0 = 4 bulunur.

O halde, 4444444444 sayısının 9 a bölümündün kalan 4 tür.

Örnek 11:

Dört basamaklı 268m sayısının 10 ile bölümünden kalan 3 olduğuna göre, m kaç olmalıdır?

Çözüm:

Bir sayının 10 a bölümünden kalanı bulmak için, birler basamağına bakılmalıdır. Sayınnı birler basamağındaki rakam kaç ise, kalan odur.

Bu nedenle, 268m sayısının 10 ile bölümünden kalan 3 olduğuna göre, m = 3 olmalıdır.

Örnek 12:

Dokuz basamaklı 901288563 sayısının 11 ile bölümünden kalan kaçtır?

Çözüm:

9 0 1 2 8 8 5 6 3

+ - + - + - + - +

Kalan = ( 9 + 1 + 8 + 5 + 3 ) - ( 0 + 2 + 8 + 6 )

= 26 - 16

= 10

olarak bulunur.

Örnek 13:

Beş basamaklı 5m23n sayısının 30 ile tam olarak bölünebilmesi için, m ve n nin hangi değerleri alması gerekir?

Çözüm:

Bir sayının 30 ile tam olarak bölünebilmesi için, hem 10 ile hem de 3 ile tam olarak bölünmelidir.

Bir sayının 10 ile tam olarak bölünebilmesi için, sayının birler basamağının 0 olması gerekir. Dolayısıyla, n = 0 olmalıdır. Böylece, verilen sayı

5m230

olur.

Bir sayının 3 ile tam olarak bölünebilmesi, sayının rakamları toplamının 3 ün katları olması gerekir. Dolayısıyla,

5 + m + 2 + 3 + 0 = 3.k

m + 10 = 3.k

m = 2, 5, 8

olur. O halde, m = 2, 5, 8 ve n = 0 olmalıdır.

Devamı Burada!!!

Sıfırın Tarihçesi





Onluk sistemin bir üstünlüğü, sıfır rakamı için ayrı bir işaretin (sembolün) bulunmasıdır. Sıfır işaretinin, gerektiğinde basamaklara (hanelere) yazılması gerekmektedir. Aksi halde, boş bırakılan basamak (hane) birçok yanlış anlaşılmalara sebep olur. Örneğin : Bugün, rakamla 407 şeklinde yazdığımız, dört yüz yedi sayısını, sıfır işareti kullanmadan, 4.7 veya 4 7 (4 ve 7 nin arası biraz boş bırakılarak) şeklinde göstermek mümkünse de, anlam bakımından birçok karşılıklara sebep olabilir.
Sıfır kavramını (fikrini) ilk olarak, hangi medeniyet içerisinde ve kim tarafından ortaya konulmuş (kullanılmış) olduğunda, kaynaklar hemfikir değildi. Bununla beraber, Eski Hintliler'de, milattan sonra 632 yılından itibaren sıfır için özel bir işaretin kullanılmış olduğunu, zamanımıza kadar intikal eden belgeler göstermektedir.
Eski Hintlilerden kalma kitabelerde (yazıtlarda) görülen, rakam ve işaretler, günümüzde "Hint-Arap sistemi" olarak adlandırılan sisteme göre benzerlik olduğunu, ve nümerik (terkiym) sistemin, o devirde kullanıldığını göstermektedir. Daha sonraki yıllara ait kitabeler, sayılarda, rakamın kendi zat'i değeriyle vaz'i (konum) değeri, (yani sayı içindeki anlam değeri) arasındaki bağıntının bilindiğini, sıfır anlamını veren, "0" gibi bir işaret kullanıldığını da göstermektedir.
Sıfır için, ayrı bir özel işaretin bulunuşu ve basamak fikrinin ustaca kullanılışı, onluk sistemi (decimal), sadece matematiğin değil, ilim dünyasının, en elverişli sistemlerinden biri yapmıştır. Onluk sistemin bu hali için, Fransız matematikçi Pierre Siman Laplace (1749-1827), bu konuda "Dünyanın en faydalı sistemlerinden biridir." demektedir.

ESKİ HİNT MEDENİYETLERİNDE SIFIR.

Romalı ve Çinlilerin eksine, Eski Hint alimleri, aritmetik işlemleri, özel bir harf ve işaret belirtmeden, sadece 1 den 9 a kadar olan rakamlardan istifade ederek yazarlardı. Rakamla, hesap yapmanın tek örneği olan, bu pozisyonun tespiti ve yazılması merhalesine ulaşanlar, sadece Eski Hintliler ve Mayalardı.
Kaynaklar; Hindistan'dan, 300 yıl kadar önce, sayı işaretinin, rakam şekline dönüşmeye başladığını belirtmekte. Hintliler, en geç, 6. yüzyıla doğru, belki de biraz daha önceki tarihlerde, aritmetik işlemlerde, sadece 1 den 9 a kadar devam eden dokuz ayrı rakam halinde kaldılar. Böylece, hesap işlerinde, sağdan sola doğru çoğalan (yükselen) rakamlar, ilk olarak ortaya çıktı (görüldü). Bu rakamlar, hemen hemen 622 yılından itibaren Hindistan dışında da tanınmaya başladı. Fırat'ta bir okul müdürü, aynı zamanda da manastır idarecisi olarak çalışan Suriyeli alim Sevarus Sabokht : "Bilinen bütün usullere üstün olan, Hint hesabının, yani dokuz ayrı rakamın (işaretin) maharetli usulünden bahseder" Bu durum, Hint rakamlarının mahzar olduğu ilk taktirdir. S. Sabokht, bu dokuz ayrı rakamlarla, yeni bir usul dahilinde hesap yapabildi.
Ancak; bu dokuz ayrı rakam, bazı sayıları ifade etmeye yeterli gelmiyordu. Çünkü; üç bin yedi yüz elli dört olan bir sayıyı 3754 şeklinde belirtmek mümkündür. Değeri üç yüz sekiz olan bir sayının da, 38 şeklinde meydana çıkmaması için, noksan (boş) kalan onlar basamağına (hanesine) değişik bir işaretlemenin yapılması zorunludur. Noksan (boş) kalan, basamağı (haneyi) işaretleyip, belirtmek için "boşluğu" şekillendirmek, anlamlandırmak zorundaydılar. Noktayı "sunya" veya "sunyabinde" , boşluk veya içi boş yuvarlağı da "kha" kelimesi ile adlandıran Hint alimleri, boş kalan basamağa (haneye), sembol olarak "daire" veya "nokta" şeklinde yeni bir sembol verdiler.
Düşünce tarihin en önemli olaylarından biri sayılan, bu sayı yazısına, son mükemmeliyeti Hintliler'in vermiş olduğu ortaya çıkmaktadır.
O halde, menşe itibariyle, sadece, basamak sistemi içinde, noksan basamağa (haneye) gerekli işaret olarak başvurulan bu sembol, yani bugünkü ifadeyle "sıfır" rakamı, derhal müstakil bir sayı şeklinde, ilk olarak Hint hesabında ortaya çıkmıştır.
Bu sayı işareti, yani "0" (sıfır) veya "." (nokta) anlamındaki işaret, miladın 400. yılında, ilk defa Hint yazılı eserleri içinde görülmeye taşlar. Hint Dünyası'nın, ünlü matematikçi ve astronomu Brahmagupta (598-660) , 632 yılında yazdığı, astronomi konuları ile ilgili Siddhanta adlı eserinde, dokuz ayrı sayı işareti ve sıfır ile birlikte hesap yapmaya dair kaideleri göstermiştir.

TÜRK-İSLAM DÜNYASINDA SIFIR.

773 yılında, Kankah isimli Hintli bir astronom, Halife el-Mansur'un (754-775), Bağdat'taki sarayına gelir. Zamanın ünlü İslam alimi İbn'ül Adami, astronomi cetvelleri ile ilgili eserinde, ilim tarihi için önemli olan bu olayı, "İnci Gerdanlık" başlığı altında şöyle açıklar;
"Hicretin 156. (773) yılında, Hintli bir alim elinde bir kitapla, Halife el-Mansur'un huzuruna çıkar. Kardağa'ların Kral Figar adına istinsah ettikleri bir kitabı, Halifeye sunar. El-Mansur, bu eseri, hemen Arapça'ya çevrilmesini ve gezegenlerin hareketleri ile ilgili bir eser yazılmasını emreder... Bu görevi, Muhammed bin İbrahim el-Fezari üzerine alarak 'Astronomlar Nazarında Büyük Sinhind' adlı bir eser yazar. Bu eserin etkinliği, halife el-Memun zamanına kadar sürer. Eseri, Muhammed bin Musa el Harezmi, astronomlar için yeniden hazırlar (yazar). Sinhind Metodunu uygulayan astronomlar, eseri çok beğenirler ve konusunun süratle yaygınlaşmasını sağlarlar."
Hintli alimin, beraberinde Bağdat'a getirdiği ve onunla, önce Halife el-Mansur'un ilgisini çektiği kitap, gerçekte Brahmagupta'nın Siddhanta adlı eserinden başka bir eser değildi. Sinhint adıyla Arapçaya çevrilen bu eser, zamanın halife ve alimleri arasında, hemen ilgi görüp süratle yayıldı.
Harezmi tarafından yeniden hazırlanan söz konusu eser, İngiliz tercüman Baht'lı Adelhard tarafından, zamanın ilim dili olan Latinceye tercüme edildi ve Batılı alimlerin istifadesine sunuldu. Bu tercüme kitap; Hint sayılarını açıklayan, Hint hesabını, sayı yazısını, toplama ve çıkarma, ikiye bölme, iki misli artırma, çoğaltma ve bölme ile kesir hesabını öğreten Hesap Sanatına Dair adlı ikinci eserdir.
Bu Latince tercüme eser, önceleri İspanya'ya gelir ve 12. yüzyıl başlarında, Orta Avrupa'ya geçerek yaygınlaşır.
Hint alimleri, daire şeklinde gösterdikleri ve bugünkü ifadeyle "0" (sıfır) olarak adlandırılan kelime için, bir şeyin hiçliği ve boşluğu anlamını ifade eden "sunya" adını vermişlerdir.
İslam alimleri (Araplar) da bu işareti ve anlamını öğrenince; Arapçada boşluk anlamına gelen "es-sıfır" adını vermişlerdir.
Leonardo, es-sıfır kelimesini Latince'ye tercüme ederek Latince metinlerde cephrum şeklinde Latince'leştirdi.
Daha sonraki yıllarda, Avrupa'nın değişik memleketlerinde, değişik yazım (imla) şekilleri kazanmıştır. Bunlardan :
Leonardo'nun eserine istinaden, önce zefero, daha sonra da zero yazım şeklini aldı ( Livra kelimesinin zamanla lira yazım şeklini alması gibi.)
Fransa'da ise; gizli işaret anlamına gelen chiffre şeklinde adlandırılan cephirum kelimesi, chiffer = hesap yapmak şeklini alarak, yaygınlaşmaya devam etti.
Batı'da, İtalyanca aynı anlama gelen, zero kelimesinin kabülü sonucu, bu kelimenin iki ayrı anlamı sebebiyle İngiltere'de cipher ve zero şeklini aldı.
Almanya'da da, ziffer yazım şeklini aldı. 14. yüzyıldan sonraki yıllarda da ziffern yazım şeklinde kullanılmaya başlandı.
Saverus Sabokht, Brahmagupta ve Harezmi isimleri, Arap rakamlarının, Batı'da görülmesinde birbirini takip eden üç isim olarak karşımıza çıkmaktadır.
Batı literatüründe "Arap Rakamları" olarak bilinen, İslam Dünyası rakamlarının, sıfır "0" dahil olmak üzere, on ayrı şeklini Batı'ya ilk defa öğreten, papalık tahtının şair ve matematikçisi Gerbert olmuştur. Gerbert'in etkisi tam sekiz yüz yıl devam etmiştir.
Gerbert, öğrenimini Aurlillac Klisesinde tamamlamıştır. Burada edindiği bilgiler sonucu, birçok matematikçinin dikkatini çekti. Sonuçta da, matematik araştırmalarını hızlandırdı. İstinsah faaliyetlerini çoğalttı. Gerbert, hakkında değişik rivayetler vardır. Bu rivayetler hakkında, geniş bilgi, müsteşrik Sigrid Hunke tarafından hazırlanan İslam'ın Güneşi Avrupa'nın üzerinde eserde bulunmaktadır. Bu rivayetlerden birisi şudur :
Gerbert, sıfır kavramını bilmiyordu. Mesela 1002 sayısında sıfır 0lmayınca, yazılanların anlaşılması mümkün değildi. Gerbert ve öğrencileri, sıfır hakkında, herhangi bir bilgiye sahip olmadıklarından, yapılanların manasını kavrayamadıkları anlaşılmakta. Gerbert, sayı yazısını, Batı Arapları'ndan getirir. Araplardan, İspanya seyahati sırasında öğrendiği sanılmaktadır.
Gençliğinde itibaren, Hindistan'ın bir ucundan öbür ucuna yaptığı bir çok seyahatlerle, Hint dilini ve ilmini tam anlamıyla Öğrenen Gertert'in çağdaşı olan Beyruni'den o sıralarda, Hindistan'da yazılmış harf şekillerinin ve ilk rakam şekillerinin diğer memlekete geçince, değiştiğini öğreniyoruz, Beyrurıi, Araplar'ın, Hintliler'den en elverişli rakamları aldıklarını açıklar. Araplann birbirinden farklılık gösteren iki çeşit , Hint sayı yazısını kullandıklarını, Harezmi de açıklar.
Harezmi tarafından, 830 yılında yazılan eserin ilk kopyaları, Viyana Saray Kütüphanesinde bulunmaktadır. Bu elyazmaları (manüskri), 1143 tarihini taşımaktadır. Salen Manastırı'nda bulunan ikinci bir kopya ise, bugün Heilderburg'ta muhafaza edilmektedir.
Avrupa, ilim dünyasında sunulan bu önemli belge ile, Araplar'ın, önce birler basamağından başlayarak, rakamları sağdan sola doğru yazıp okuduklarını, bu eserden öğrenir. Harezmi'ye ait bu eserde; toplama ve çıkarma işlemlerine ait örnekler görülmektedir.
Latince tercümesinde, bugünkü yazım şekline göre, "0" (sıfır) a ait bir örnek Şöyledir :
38-18=20

"Sekiz diğer sekizden çıkınca, geriye bir şey kalmaz. Bu takdirde, boş kalmaması için, bir dairecik koy. Dairecik, boş hanenin yerine geçmek zorundadır. Eğer bu hane boş kalırsa, diğer haneleri de tahdit edilmiş olurlar. Artık ikinci hane, birinci hanenin yerini tutar. Yani; ikinci hane, birinci haneden başka bir şey değildir."
Bugünkü bilgilerimize göre basit gibi görünen, ancak zamanın matematik görüşü olarak son derece önemli olan bu açıklamanın böyle olması düşünüldüğünde, Harezmi'nin görüşü olan açıklamanın önemi kendiliğinden ortaya çıkar. Şöyle ki; sıfır, ilk basamağın aksine, sola konsaydı, "02" gibi bir sayı elde edilir ki, ikinin solundaki sıfır sonucu değiştirdiğinden, Harezmi'nin matematik görüşünün zamanı matematik bilgileri karşısındaki önemi açık olarak ortaya çıkar.
Brahmagupta'nın ,Siddahta adlı eseri, 776 yılında, Saverus'tan 114 yıl sonra, Arapça'ya çevrilen bir eserinin içinde yer almıştır. Gerbert'ten yüz yıl sonra, Harezmi'nin Latince tercümesi, Orta İspanya yoluyla Batı'ya ulaşır.
Bu tarihlerde, "Arap Sayı Yazısının", ilim dünyasındaki zaferine çığır açan başka bir şahıs ile karşılaşıyoruz.
Pizza'lı Leonardo (1180~ ?) ; matematik bilgisinin, esaslarını bizzat, ilk kaynaklarından, yani Mısır'a yaptığı uzun süreli seyahatler sonucu elde etmiştir. Elde ettiği bilgileri de, Batı'ya öğretmiştir. Leonardo'nun babası, Cezayir sahillerinde ticaret işleri ile meşgul idi. İslam medeniyetinin etkinliğini gören, baba Leonardo, oğlunu yetiştirmek için yanına çağırır. Oğlu Leonardo Hint, yani Arap (İslam) rakamları ile hesap yapmaya hayran kalır. Hint hesap sistemlerinin, her türlü uygulamasını öğrenir. Bu arada, İskenderiye ve Şam kütüphanelerinde, eline geçirebildiği ilmi değeri olan eserleri de toplayıp, Avrupa'ya götürdüğü tarihi bir gerçek olarak bilinmektedir.
Oğul Leonardo, İslam (Arap) hesap öğretmenlerinden, öğrendiği bütün bilgileri sıfır rakamı dahil olmak üzere, çevresindekilere, uygulamaları ile birlikte öğretir. Oğul Leonardo'nun bu öğretisi sırasında konu ettiği rakamlar, bugünkü gösterim şekliyle şöyledir;



Bu rakamlar, Arapçada "sıfır" adı verilen "." işareti ile her türlü hesabın yapılabildiğini açıklar.
Matematikte; bugün Türkçe'mizde gösterim şekli olan, "0" (sıfır), Arapça'da gösterim şekli olan "." (sıfır) sembolü ile, Türkçe yazım §ekli olan "sıfırı" ve aynı anlama gelen, diğer Batı dillerinde kullanılan ve "rakam" ve "yazım" şekillerinin tarihi gelişimleri, ayrıntılı olarak incelemeye değer bir konudur.

SIFIRIN TARİHİ KRONOLOJİSİ.

M.Ö. 3000 yılları : Eski Mısırlılar, onluk sistemi bilmediklerinden, sıfır anlamını ifade eden bir sembol (işaret) kullanmamışlardır.
M.Ö. 700-500 yılları : Mezopotamyalılar, sadece astronomi metinlerinde, sıfır anlamına gelecek, özel bir işareti sürekli olarak kullanmışlardır.
M.S. 2. yüzyıl : Eski Yunan'da, Batlamyos'un astronomi metinlerinde, Yunan alfabesinde görülen, içi boş anlamını ifade eden "0" şeklinde bir harf kullanmışlardır. Ancak, matematiklerinde, bu harfi (işareti) kullanmadıklarını, kaynaklar açık olarak belirtmektedir.
M.S. 400 yılları : Eski Hint Dünyasında, ilk defa, bugünkü ifadeyle sıfır anlamına gelen, "0" ve "." şeklinde işaret (sembol) görülmeye başlamıştır.
M.S. 632 : Eski Hint alimi Brahmagupta'nın astronomi ile ilgili olan Siddhanta adlı eserinde, dokuz ayrı ve sıfır rakamı ile hesap yapmayı gösteren kaideler belirtilmiştir.
M.S. 830 : İslam Dünyasının önde gelen matematik alimi Harezmi tarafından, dokuz ayrı rakam dahil sıfır rakamı ile birlikte aritmetik işlemlerin nasıl yapılacağı açık olarak gösterilmiştir.
M.S. 1100 yılları : Avrupa matematik dünyasında, yaygın olarak kullanılmaya başlar.

Devamı Burada!!!

EULER Sayısı - e sayısı






e sayısı veya Euler sayısı, matematik, doğal bilimler ve mühendislikte önemli yeri olan sabit bir reel sayı, doğal logaritmanın tabanı. e sayısı aşkın bir sayıdır, dolayısıyla irrasyoneldir, ve tam değeri sonlu sayıda rakam kullanılarak yazılamaz.

e sabitine dolaylı olarak ilk değinen İskoç matematikçi John Napier olmuştur. Napier, 1618'de logaritmalar üzerine yayımladığı bir kitabın ekinde, e sabitini kullanarak bazı hesaplar yapmıştır;fakat sabitin kendisiyle fazla ilgilenmemiştir. e sayısını gerçek anlamda ilk keşfeden Jakob Bernoulli olmuştur. Bernoulli, e sayısını 1683'te birleşik faiz problemini incelerken keşfetmiş ve bu sayının yaklaşık değerini hesaplamıştır. Sabite e ismini veren ise İsviçreli matematikçi Leonhard Euler'dir. Euler ilk olarak 1731'de Christian Goldbach'a yazdığı bir mektupta bu sabitten "e sayısı" diye bahsetmiştir. Euler öncesi ve sonrasında bu sabit için b ve c harfleri de kullanılmışsa da sonuçta kabul edilen isim e olmuştur.

Euler e sayısını, virgülden sonra 23. basamağına kadar hesaplayabilmiştir. Günümüzde ise e sayısının milyarlarca basamağı bilinmektedir. e,nin irrasyonel bir sayı olduğu Euler tarafından,aşkın bir sayı olduğu ise Fransız matematikçi Charles Hermite tarafından kanıtlanmıştır.

Matematiksel ifadelerde çok karşılaşılması bakımından e sayısı çok önemlidir. Doğayı incelediğimizde , tabiatın etkinliklerinin çoğunluğunun belirli bir karekteristiğe sahip olduğu görülür. Herhangi bir büyüklüğün miktarında meydana gelen değişiklik büyüklüğün miktarına bağlıdır. Bu olay bir tabaktaki bakteri, radyoaktif madde miktarı veya elektrik akım miktarı olabilir. e sayısının rastlanmasına günlük hayattan bir örnek olarak bir lira % 10 faiz altında bir yıl sonra iki lira olur. Ancak faizler altı aylık hesaplanırsa bir yıl sonra 2,25 lira olarak ortaya çıkar. Eğer faiz üç aylık hesaplanır ise bu sonuç 2,37 civarındadır. Ancak faiz hesaplama süresi azaldıkça sonuç e=2,718... değerine yaklaşır.

Devamı Burada!!!

Bal Peteğinin Müthiş İlmi




Bal peteğinin enteresan mimarisi tarih boyunca insanların ilgisini çekmiştir. Yan yana altıgenlerden oluşan bu yapı, son derece hassas olup ortalama duvar kalınlıkları 0,1 mm'dir. Bu ortalama değerden sapma ise, en fazla 0,002 mm kadardır. Peteklerin inşasında uyulan geometri kaidelerinin ne derece ideal olduğunu anlayabilmek için, matematikî bir bakış açısına sahip olmak gerekir.

Daire, belli bir sabit alanı çevreleyen en kısa kenar uzunluğuna sahip geometrik şekildir. Meselâ alanı 10 cm2 olan kare ve dairenin çevre uzunlukları karşılaştırıldığında, dairenin çevresinin daha kısa olduğu görülür. Ancak bal peteğinin inşasında durum tam olarak böyle değildir. Burada bal peteğinin geniş çerçevesi, eşit ve daha küçük alanlara bölünecektir ve bölme işleminde en az çevre uzunluğuna sahip şekil kullanılacaktır. Çerçeveyi, eşit alanlara sahip küçük daireler şeklindeki peteklere bölmek istersek, yukarıda ifade edildiği gibi en kısa kenar özelliği sağlanacak, fakat dairelerin kenarları arasında kalan boşluklar için daha fazla mum harcanmış olacaktır.

Halbuki bu problemi, en kısa kenar uzunluğu ve en az malzemeyle (mum) çözmek için geometri prensiplerine müracaat ettiğimizde, peteklerin bölünmesinde çokgenlerin kullanılması gerektiği görülecektir. Kenar sayısı n olan aynı alana sahip çokgenler düşünelim. Bunların içerisinde en kısa çevre uzunluğuna sahip olanı düzgün n-gendir. Düzgün ile kastedilen, bütün kenarları ve iç açıları eşit olandır. Bu tip bir çokgen, her zaman bir dairenin içine çizilebilir ve çokgenin köşeleri çemberin çevresi üzerindedir. Böyle bir yapının ideal daire şekline yakın olmasından dolayı çevre uzunluğu en az olmaktadır. Meselâ eşit alanlı üçgenler içerisinde en kısa çevre uzunluğu eşkenar üçgende, dörtgenler arasında en kısa çevre uzunluğu ise karede elde edilir. Benzer şekilde beşgen ve altıgenler kendi aralarında kıyaslanırsa, en kısa çevre uzunluğu düzgün beşgen ve altıgende elde edilebilir.

Akla gelebilecek ilk soru, belli bir alanı bölerken hangi düzgün çokgeni kullanmamız gerektiğidir. Bir daire ve içerisine çizilmiş n kenarlı bir düzgün çokgenin bir kısmı Şekil 1'de gösterilmiştir. Şekilden de görülebileceği gibi çokgenin bir iç açısı 180-360/n derecedir. Verilen bir geniş alanı küçük alanlara bölmek istediğimizde, komşu çokgenlerin birbirlerine tam oturması ve aralarında boşluk kalmaması gerekir. Bunun olabilmesi için birbirine yaslanan komşu çokgen köşelerine ait iç açıları toplamı 360 derece olmalıdır (Şekil 2). Başka bir ifadeyle bir iç açının tam sayı bir katı 360 derece olmalıdır. N komşu iç açıların adedini temsil etmek üzere, bu durumda aşağıdaki denklemi yazabiliriz (N tamsayıdır):

N (180 - 360 / n ) = 360
Buradan N çözülürse
N = 2n / (n-2)= 2 + 4 / (n-2)

ifadesi elde edilir. Bulmak istediğimiz, hangi kenar sayısı n için, N değeri tamsayı olmaktadır. Tamsayı değerleri, sadece n=3, 4 ve 6 için elde edebiliriz ve 6'dan büyük hiçbir rakam için tamsayı elde edilemez. Yani bir alanı boşluksuz bölmek istersek, ya üçgen, ya dörtgen veya altıgen kullanmalıyız. Kenar sayısı 6'dan fazla olan düzgün bir çokgen ile boşluksuz bölme mümkün değildir. Benzer şekilde düzgün beşgenler de uygun bir çözüm değildir. Şekil 3'te üç düzgün beşgenin yan yana getirilmesi ile 36O açılı boş bir alan ortaya çıkmıştır. Halbuki altıgenler boşluksuz yan yana getirilebilirler (Şekil 4). Ayrıca eşit alanlı üçgen, dörtgen ve altıgen birbiri ile karşılaştırıldığında, en az çizgi uzunluğu altıgende olmaktadır. Dolayısı ile en az balmumu sarfiyatı bu şekilde bölme kullanılarak elde edilebilir.

Matematikçiler ayrıca, kenarları doğru olmayan, eğri olan çokgenlerin daha iyi olup olmadığını da araştırdılar. Kenar eğri olunca, bir çokgende dışbükey şekil elde edilirken komşu çokgende ister istemez içbükey şekil elde edilmektedir. Dışbükey eğri ile elde edilen avantajı (daire parçasına daha fazla benzemesinden dolayı) içbükey eğriden gelen daha fazla dezavantaj yok etmekte ve net olarak bir kazanç elde edilememektedir. Michigan Üniversitesi’nden Thomas Hales 1999'da tartışmalara son noktayı koydu ve bir alanı eşit küçük alanlara ayırmak istediğimizde, en ideal şeklin düzgün altıgen olduğunu ispatladı. Her ne kadar altıgen şeklin, ideal bir şekil olduğu uzun zamandır belirtilse de, bunun sağlam bir matematik ispatı yapılamamıştı. 1999'da ispatını ancak yapabildiğimiz bir çözümü, arıların milyonlarca yıldır şaşırmadan Sevk-i İlâhî ile uygulamaları, Allah'ın ilhâmından başka ne olabilir ki... Şâyet arıların petek inşa teknikleri ilk yaratıldıkları dönemden bu yana evrimleşerek gelseydi, fosil kayıtlarında, altıgen dışında başka geometrik şekillere de rastlanması gerekirdi. Halbuki başka bir şekildeki bal peteğinin kullanıldığına dâir ipucuna rastlanmamıştır. Bizzat Charles Darwin bal peteğini, işçilik ve balmumunu mükemmel ekonomize eden bir mühendislik harikası olarak tanımlamıştır.

Şimdiye kadar probleme iki boyutlu baktık. Ancak bal peteği üç boyutlu bir cisim olup altıgen prizma şeklindedir. Altıgen prizma şeklindeki petekler iki tabaka hâlinde olup, bir uçları açık, diğer kapalı uçları ise sırt sırta yerleştirilmiştir (Şekil 5). Çerçeve yere dik gelecek şekilde yerleştirildiğinde, prizmalar yatay ile 13O’lik bir eğim açısı yapacak şekilde inşa edilmiş olurlar ve bu açı balın akmaması için yeterli olan en küçük açıdır. Acaba peteğin kapalı ucunda en az balmumu sarfiyatı için nasıl bir geometri olmalıdır? 1964'te matematikçi Fejes Toth, en ideal kapatmanın iki altıgen ve iki kare ile sağlanabileceğini gösterdi (Şekil 6a). Arılar ise biraz farklı olarak üç eşkenar dörtgenle kapatma yapmaktaydılar (Şekil 6b). Eşkenar dörtgenlerin iç açıları 70,5O ve 109,5O olup, üç eşkenar dörtgen çatısı şekli için en ideal matematik çözümü vermektedir. Görünüşte arıların uygulamasında iki altıgen ve iki kareye göre alanda % 0,035'lik çok küçük bir kayıp olmaktaydı. Ancak gözden kaçırılan bir nokta vardı, o da hesaplamalarda duvar kalınlığı son derece ince alınıyordu.

Araştırmacılar, Toth'un matematik modelini tecrübe etmek üzere sıvı hava köpüğü kullandılar. İki cam arasına, iki tabaka olacak şekilde 2 mm çaplı kabarcıklara sahip deterjan çözeltisi pompaladılar. Camlarla temas eden kabarcıklar altıgen yapılara dönüştü. Ortada iki tabakanın sınırında ise Toth'un öne sürdüğü iki altıgen ve iki kare şeklindeki yapı oluştu. Kabarcık duvarları biraz kalınlaştırıldığında ise, enteresan bir durum ortaya çıktı ve yapı birden arılarda olduğu gibi üç eşkenar dörtgen yapısına dönüştü.

Prof.Dr. M.Sami POLATÖZ

Kaynak:
R. McNeill Alexander, Optima for Animals, Princeton University Press, 1996.

Devamı Burada!!!

Paradoks Nedir?




Yunanca karşı, karşıt, zıt anlamına gelen para önekiyle, fikir düşünce anlamına gelen daxos sözcüğünden oluşmuş bir kelimedir paradoks. Mantık oyunları olarak da görülebilecek paradokslar, kendilerini çözdürmek için, heyecanlandırıcı ve eğlendirici bir serüvenin içine çekerek neredeyse insanı kışkırtırlar.

Paradoksal durumlarda birlikte gerçekleşmesi beklenmeyen iki olgunun ya da birlikte varolması beklenmeyen iki niteliğin birarada çıkması söz konusudur, bazen de varılan paradoksal sonuç düpedüz mantıksal bir çelişkidir.

İsterseniz paradoksları birlikte inceleyelim
Yalancı paradoksu "Şimdi yalan söylüyorum."
Bu önermenin doğruluk değeri nedir? Yani "şimdi yalan söylüyorum" derken doğru mu söylüyorum yoksa yalan mı söylüyorum? Düşünecek olursak

Bu önermenin doğru olduğunu varsayalım. Öyleyse yalan söylüyorum. Ancak önermenin doğru olduğunu varsaymıştım öyleyse çelişkiye düştüm. Bu önermenin yalan olduğunu varsayalım. O zaman bu cümle doğru olmalıdır. Gene bir çelişki. (farkındayım zihniniz zorlanıyor.)

Berber Paradoksu
Bertrand Russell'ın 1918'de ortaya attığı berber paradoksu da "yalancı paradoksu" na benzer bir paradoks. "Seville'in kendini traş etmeyenlerini traş eden berberi kendini traş eder mi etmez mi?"Kendini traş etmeyenleri traş eden berber kendini traş ederse kendi kendiyle çelişki içine düşer. Kendini traş etmezse tanımdan ötürü kendini traş etmesi gerekir, ama bu da bir çelişkidir. Bu durumda bu berber berber dükkanını kapatıp yeni bir mesleğe atılmalıdır:))

Bu iki paradoksta da sonsuza uzanan bir kısır-döngü vardır.
İstisna Paradoksu
1. Bütün kuralların istisnaları vardır
2. Yukarıdaki cümle de bir kuraldır.
3. O halde onun da istisnaları vardır
4. Demek ki istisnaları olmayan kurallar da vardır.
Görüldüğü üzere 1. ve 4. cümleler birbirleriyle çelişki halindedir.

Timsah Paradoksu
Bir annenin elinden çocuğunu kapan timsah, çocuğa ne yapacağını annenin bilmesi durumunda çocuğu vereceğini söyler. Anne, timsaha çocuğunu yiyeceğini söyler, böylelikle meydana gelen paradoksal durum sonucunda çocuğunu kurtarır.

Şöyle ki, timsah çocuğu yiyecekse anne timsahın ne yapacağını bilmiş olacak ve timsah çocuğu teslim edecek ancak çocuk teslim edilince anne timsahın ne yapacağını bilememiş olacak; timsah çocuğu yemeyecekse anne bilemediğinden çocuğu yiyecek ama o zaman anne timsahın yapacağının bilmiş olacak ve bu yüzden yememesi gerekecek.

Kısaca, bu iki durumda da timsah çocuğu ne yiyebilir ne de yiyemez.

İşte size başka paradokslar:

" YAPTIĞIM AÇIKLAMA YANLIŞTIR"
Eublides

" BÜTÜN GİRİTLİLER YALANCIDIR"
Giritli Eupiminides

" DÜŞMANLA KARŞILAŞTIK VE O BİZİZ"
Walt Kelley

" KENDİ KENDİSİNİ ELEMAN OLARAK İÇERMEYEN KÜMELERİN KÜMESİ KENDİ KENDİSİNİ ELEMAN OLARAK İÇERİR Mİ?"
Bertrand Russell

ALGI YANILMALARI
Matematikte paradoks olarak geçen algı yanılmalarını daha yakından tanıyalım.Göze veya akla ilk bakışta bakılan yönde doğru gelen şekil,ifade,anlatım vs. denir.Paradokslar çok çeşitlidir.Felsefe de de geçen bu konu Matematik 'ten çok eğlence bilimine daha yakın..Binlerce yıllık geçmişi olan paradokslar, insanların kafasını devamlı meşgul etmiştir. Aslında doğru gibi görülen bir önerme veya fikir, tamamen yanlış olarak çıkar karşımıza. Tam tersi de mümkündür; yıllarca yanlış zannettiğimiz olayların, fikirlerin, hesaplamaların, doğru olduğunu görmek, bizi şaşkınlığa ve hayrete düşürür. İleride bolca misal vereceğimiz paradoksların, yapılmış birkaç tanımını aktaralım:

Kısaca paradoks:
'Çok mantıksız görünen, aslında çok mantıklı bir değiş'
'Kağıt-kalem veya mantık ilüzyonu'

BİR KAÇ PARADOKS

Paradokslar ilginçtir, eğlencelidir, öğreticidir, şaşırtıcıdır, zihni açar...
Tarihte bilinen ilk paradoks örneklerini Epimenides vermiştir. Giritli olan Epimenides:
-'Bütün Girit'liler yalancıdır!' diyerek bizi çelişkiye götürür. Nasıl mı?
Şöyle ki :
Eğer gerçekten giritliler yalancı ise kendisi de giritli olduğuna göre o da yalancıdır. Yani söyledikleri yalandır(mesela yukarıdaki cümlesi). Bu cümle yalan olduğuna göre doğrusu şu olmalı:
-'Bütün Giritliler doğrucudur, doğru söyler.'
O halde söylediği doğrudur. Yani 'bütün Giritliler yalancıdır.

Günlük hayatta rastladığımız bir tane daha:
- Beni duyabiliyor musun?
- Hayır. Sesin gelmiyor (!)

Hemşerim memleket nire?
Memleketimizde bazı yer adları, kendisi ile çelişir:
Bakırköy: Adı "köy" olmasına rağmen ilçedir. Hem de yaklaşık 50 vilayetten bile büyük bir ilçe.
Viranşehir: "Şehir" değil, Ş.urfa'nın bir ilçesidir.
Kuşadası: "Ada" değildir.
Denizli: Denizli'de deniz yoktur.
Elmadağ, Kadifekale, Akdeniz, Gümüşhane...vs.

Bir otobüs ilanı:
-"Okuma-yazma öğrenmek isteyenlere müjde! Hemen aşağıdaki adrese başvurun..."
Okuma-yazma bilmeyen bir insan nasıl bu ilanı okuyacak! Okusa zaten o adrese başvurması gerekmez...
BU CÜMLEDEKİ HARF SAYISI OTUZYEDİ DEĞİLDİR. (37 Harf var)
SOCRATES'ten:
" Bildiğim tek şey var; o da hiç bir şey bilmediğim."
Karışım Paradoksu:
Bir fincan sütümüz ve bir fincan da kahvemiz var. Bir kaşık sütten alıyoruz ve kahve fincanına döküyoruz. İyice karıştırıp oradan da bir kaşık alıyoruz ve süte döküyoruz. Şimdi sorumuz geliyor:
Kahvedeki süt mü yoksa sütteki kahve mi daha fazladır?CEVAP
Berber Paradoksu:
Klasik paradokslardan biri daha:
Bir berber, bulunduğu köydeki erkeklerden, yalnızca kendi kendini traş edemeyen erkekleri traş ediyor. Berberi kim traş edecek?CEVAP
Russel Paradoksu:
1970 yılında 98 yaşında ölen Bertrand RUSSEL'ın çok bilinen paradoksu:
" Bir odada papa ve ben varım. Odada kaç kişiyiz?" Cevap:
" Bir kişiyiz. Çünkü ben, aynı zamanda papayım"
Russel'ın "Kümeler" Paradoksu:
Russel'a göre iki çeşit küme var:
a) Kendisinin elemanı olan(ihtiva eden) kümeler.
b) Kendisinin elemanı olmayan kümeler.
Şimdi, "Kendisinin elemanı olmayan kümeler"in kümesine 'X' diyelim. X, kendisinin elemanı mıdır? devamı yakında..

Nasreddin Hoca:
Nasreddin Hoca bir gün heybe almak için pazara gider. Güzel bir heybe görüp pazarcı ile pazarlık yapar ve 1 akçeye anlaşırlar. Tam oradan ayrılacaktır ki daha güzel bir heybe dikkatini çeker:
- Kaç akçe şu heybe muhterem?
- 2 akçe hocam.
- Aldım gitti, diyen hoca elindekini bırakır ve onu alıp tam gidecekken pazarcı seslenir:
- Hocam. Bu heybe 2 akçe. Sen 1 akçe verdin.
Hoca sinirlenir:
- Bre cahil adam! Sana önce 1 akçe verdim. Sonra da 1 akçelik heybe bıraktım! İkisi eder 2 akçe. Daha benden neyin parasını istersin!

Temelden:
Temel, çalışmak için gittiği şehirden, köye babasına mektup yazar. Klasik mektup cümleleriyle başlayan mektup, şu notla biter:
-"Babacuğum. Acele cevabini bekliyrum. Yalnız, zarfa biraz da para koyarsan iyi olir. Oğlin Temel."
Aradan onbeş gün geçer ve mektubun cevabı gelir. Temel büyük bir heyecanla zarfı açar. İçinden sadece mektup çıkar. Mektubun sonunda da bir not vardır:
-"Oğlim Temel. Sana para göndereceydum. Ama aha bu geri zekali anan zarfi kapatmiş. Bir daha ki sefere evladim. İmza:Buban."

Müfettiş Paradoksu:
Bir işyerini, önümüzdeki on gün içinde vergi müfettişleri denetlemeye gelecektir. Müfettişler, mantık oyunlarını sevdikleri için işyeri yetkilisine telefon açarlar ve:
-"Hangi gün geleceğimizi, o günün sabahında tahmin edebilirseniz, denetimden kurtulacaksınız" derler.
Defterleri denetimden geçemeyecek kadar karışık olan işyerinin yetkilisi, biraz düşünür ve müfettişlere:
-"Galiba bu denetimi yapamayacaksınız efendim. Çünkü buraya geleceğiniz günü çok kolay tahmin edebilirim. Şöyleki:
Denetimi, onunucu ve sonuncu güne bırakmazsınız. Çünkü ben ilk dokuz gün gelmediğiniz takdirde onuncu gün geleceğinizi hemen bilirim. Dokuzuncu gün de gelmezsiniz. Çünkü ilk sekiz gün içinde gelmezseniz, dokuzuncu gün geleceğiniz açıkça belli olur. (Onuncu gün gelmeyeceğinizi az önce ispatlamıştım). Onuncu ve dokuzuncu gün gelemeyeceğinize göre denetimi, sekizinci güne de bırakamazsınız. Çünkü ilk yedi gün içinde gelmediğiniz takdirde sekizinci gün geleceğinizi hemen anlarım...

Yetkili, mantık oyunlarına müfettişlerden daha meraklıymış

Devamı Burada!!!

Fibonacci Sayıları




İtalyan matematikçi Fibonacci yazdığı matematik kitaplarından birinde tavşan çiftliği olan bir arkadaşıyla ilgili olduğunu iddia ettiği bir problem sorar. Bu probleme göre arkadaşının çiftliğindeki tavşanlar doğdukları ilk iki ay yavru yapmazlar. Üçüncü aydan itibaren her çift her ay bir çift yavru yapar. Buna göre Fibonacci'nin arkadaşı bir çift tavşanla başlarsa kaç ay sonra kaç çift tavşanı olur?

İlk ay yeni doğmuş bir çift tavşanımız olsun. Matematik problemlerinde bu yavruların anasız babasız nasıl büyütülecekleri konusuna pek girilmez. İkinci ayda bu tavşanlar henüz yavrulamadıkları için hala bir çift tavşanımız var. Üçüncü ay bunlar bir çift yavru verecek ve iki çift tavşanımız olacak. Yeni doğan çift dördüncü ay doğurmayacak, oysa ana babaları yeniden bir çift yavru yapacak ve toplam üç çift tavşanımız olacak. Bu şekilde devam edersek pek bir yere varamayacağız galiba. Düşünsenize 100.aya kadar hesabı böyle götürmemiz mümkün mü? Örneğin 100.ayda kaç tavşanımız olacağını doğrudan hesaplamaya çalışalım. 99.ayda kaç tavşanımız varsa onların hepsi 100. ayda da olacak. Bunların bir kısmı yavrulayacak. Yavrulayacak olanların en az iki aylık olması gerektiğine göre 100. ayda yavrulayacak olanlar 98.ayda sahip olduğumuz tavşanların hepsi olacak. Demek ki 100. aydaki tav-şan sayısını bulmak için 98.aydaki tavşan sayısıyla 99.aydaki tavşan sayısını toplamak gerekiyor.

Bu hesaba bazı itirazlar yükselebilir. Biz sadece 100. aydaki sayıyı merak ediyorduk. Şimdi onu bulmak için hem 98. hem de 99. aylardaki sayıyı bulmamız gerekecek. Bu hesabı 100. ayda değilde üçüncü aydan itibaren yapalım. Birinci ve ikinci aylarda birer çift tavşanımız vardı. Demek ki üçüncü ay iki çift tavşanımız olacak. İkinci aydaki bir çift ile üçüncü aydaki iki çifti toplarsak dördüncü ay üç çifti bulacağız.

Buna göre Fibonacci dizisi şöyle tanımlanır:

F1 = 1

F2 = 1

Fn = Fn-1 + Fn-2 , n>2

Buna göre Fibonacci sayılarının ilk birkaç tanesi şöyle sıralanır:

1,1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,1597,2584,4181,6765,10946...

Bu arada unutmadan 100.ayda kaç çift tavşanı olacak sorusunun cevabı da şöyle:

F100 = 354 224 848 179 261 915 075

Kaynak:
Matematiğin Aydınlık Dünyası - Sinan Sertöz (TÜBİTAK)

Devamı Burada!!!

Osmanlı Ölçü Birimleri



Suyun debisinin ölçülmesinde kullanılan ölçü birimleri ; Su kaynağının debisinin ölçülmesinde birim olarak “lüle” kullanılmıştır. 1 lüle yaklaşık olarak 26 mm çapında bir borudur ve dakikada 36 litre su akıtır. Günlük yaklaşık 52 m3 su olarak kabul edilir. Şehir içinde yer alan su taksim istasyonlarında bulunan dağıtım sandıklarında kullanılan boruların günlük debisi ise dağıtım yapılan bölgenin ihtiyacına göre ayarlanmıştır ve aşağıdaki gibidir.

1 Hilal 0,5625 lt/Dak. (Günde-0,81 m3)
Çuvaldız 1,125 lt/Dak. (Günde-1,62 m3)
1 Masura 4,5 lt/Dak. (Günde-6,48 m3)
1 Kamış 9 lt/Dak. (Günde-12,96 m3)
1 Lüle 36 lt/Dak. (Günde- 51,84 m3 ~ 52 m3)

Uzunluk ölçüleri ;

Uzunluk ölçü birimi olarak “arşın” kullanılmış olmakla beraber , çarşı arşını ile mimar arşını ( Zira-ı Mimari / Zira ) ve dolayısıyla alt birimleride birbirinden farklıdır.
Çarşı ölçüleri
1 Arşın 0,6858 mt.
1 Rub (urub) 0,0857 mt. (1/8 Arşın)
1 Kerrab (Kirâh) 0,0428 mt. (1/16 Arşın)
1 Endaze 0,6525 mt.
Mimar ölçüleri
1 Arşın (Zira) 0,757738 mt.
1 Parmak (1/24 zira) 0,031572 mt.
1 Hat (1/12 parmak) 0,002631 mt.
1 Nokta (1/12 hat) 0,000219 mt.
Çarşı ölçü birimi ve 68,58 cm’e karşılık gelen Arşın ölçü birimi ile yine bir çarşı ölçü birimi olan ve 65,25 cm’e karşılık gelen Endaze ölçüleri birbirlerine çok yakın değerlerdedir.

Ağırlık ölçüleri ;

1 Çeki (4 Kantar) 225,79832 kg.
1 Kantar (44 Okka) 56,44958 kg.
1 Batman (6 Okka) 7,69767 kg.
1 Okka/Kıyye (400 Dirhem) 1,282945 kg.
1 Dirhem 3,2073625 gr.
1 Miskal 4,5819464 gr.
7 Miskal (10 Dirhem) 32,073625 gr.
1 Denk (1/4 Dirhem) 0,80184 gr.
1 Kırat (1/4 denk) 0,20046 gr.
1 Buğday (1/4 kırat) 0,05011 gr.

Mehmet İzzet’in 1912 baskısı İlm-i Hisab kitabına göre ise ağırlık ölçüleri farklı tarif edilmektedir.

Evzan-ı Kebire ( Büyük ağırlık ölçüleri) ;
1 Çeki 225,978 kg.
1 Kantar 56,450 kg.
1 Batman 7,692 kg.
1 Kıyye 1,282 kg.
Evzan-ı Mutavassıta ( Orta ağırlık ölçüleri) ;
1 Dirhem 3,207 gr.
1 Miskal 4,810 gr. ( 1,5 Dirhem )
1 Denk 0,80175 gr. ( 1/4 Dirhem )
Evzan-ı Hafife ( Hafif ağırlık ölçüleri) ;
1 Kırat 0,20043 gr. ( 1/4 Denk )
1 Bağdadi 0,0501 gr. ( 1/4 Kırat )
1 Fitil 0,0125 gr. ( 1/4 Bağdadi )
1 Nakir 0,00626 gr. ( 1/2 Fitil )
1 Kıtmır 0,00313 gr. ( 1/2 Nakir )
1 Zerre 0,00156 gr. ( 1/2 Kıtmır )

Alan Ölçüleri ;

1 Hektar = ( 11 Dönüm ) = 10.105,337 m2 = ( 17.600 zirakare )
1 Dönüm = ( 4 Evlek ) = 918,667 m2 = ( 1.600 zirakare ) = ( 40 x 40 zira )
1 Evlek = 229,666 m2 = ( 400 zirakare ) = ( 20 x 20 zira )
1 Zirakare= 0,57416 m2

Devamı Burada!!!

Piramitler ve Gizemleri!!!



Binlerce yıl önce yapılan piramitlerde bugün bile hala binlerce sır yatmaktadır.O tarihlerde piramitleri yapan insanlar herhalde metre kavramını bilmiyorlardı. Ve bütün bunları göz kararıyla yapmaları da imkansız. Bugün bile çok düzenli bir şekilde yapılan gökdelenlerde çok hafif bir sapma söz konusu olabiliyor. Peki o zamanlar bunları yapan insanlar ölçüm için ne kullandılar. Saniye mi? Arşın birimi mi? Mısır endazesi mi? Bilemiyoruz. Şimdi bu piramitlerde, özellikle Gize bölgesindeki büyük piramidin çeşitli oranlarda ölçümlerine bir bakalım. Bunların hepsi bir rastlantı mi? Olabilir. Ama bu kadar çok rastlantıda insani düşündürüyor!

Piramitlerin Gizemi...

* Her biri 20 ton olan taşlardan inşa edilmiştir ve bu taşları temin edilebilecek en yakın mesafe yüzlerce kilometre uzaklıktadır. Bu taşların nasıl getirildiği konusunda kesin olmayan farklı varsayımlar bulunmaktadır.
* Piramit, kimin adına yapıldıysa, onun bulunduğu odaya, yılda sadece 2 kez güneş girmektedir. (doğduğu ve tahta çıktığı günler)
* Mumyalarda radyoaktif madde bulunduğundan mumyaları ilk bulan 12 bilim adamı kanserden ölmüştür.
* Piramitlerin içerisinde ultra sound, radar, sonar gibi cihazlar çalışmamaktadır.
* Kirletilmiş suyu, birkaç gün Piramit'in içine bırakırsanız; suyu arıtılmış olarak bulursunuz.
* Piramit'in içerisinde süt, birkaç gün süreyle taze kalır ve sonunda bozulmadan yoğurt haline gelir.
* Bitkiler Piramit'in içinde daha hızlı büyürler.
* Piramit'in içine bırakılmış su, 5 hafta süreyle bekletildikten sonra yüz losyonu olarak kullanılabilir.
* Çöp bidonu içindeki yemek artıkları, hiç koku vermeden Piramit içinde mumyalaşır.
* Kesik, yanık, sıyrık gibi yaralar büyükçe bir Piramit'in içinde daha çabuk iyileşme eğilimi gösterir.
* Piramitlerin bazı odalarının içinde ne olduğu hakkında bir bilgi yoktur; araştırmacıların çoğu, ya içinde kayboldular ya da aynı yerde birkaç tur attılar, fakat içlerini göremediler.
* Piramitlerin içi yazın soğuk kışın sıcak olur
* Büyük Piramidin açıları, Nil'in delta yöresini iki eşit parçaya bölerler.
* Gize'deki üç piramit aralarında bir Pisagor üçgeni olacak şekilde düzenlenmişlerdir. Bu üçgenin kenarlarının birbirlerine göre oranı 3:4:5'dir.
* Büyük Piramidin tabanının yüzeyi, anıtın yarısının iki katına bölündüğünde pi=3,14 sayısı elde edilir.
* Büyük Piramidin dört yüzeyinin toplam yüzölçümü, piramit yüksekliğinin karesine eşittir.
* Büyük Piramit, dünyanın kara kitlesinin merkezinde yer alıyor.
* Büyük Piramit, dört ana yöne göre düzenlenerek inşa edilmiştir.
* Piramit dev bir güneş saatidir. Ekim ortasıyla Mart başı arasında düşürdüğü gölgeler mevsimleri ve yılın uzunluğunu gösterirler. Piramidi çeviren tas levhaların uzunluğu bir günün gölge uzunluğuna eşittir. Bu gölgelerin tas levhalar üstünde gözlenmesiyle günün 0,2419 bölümünde yılın uzunluğu yanlışsız olarak saptanabiliyordu.
* Büyük Piramit'le dünyanın merkezi arasındaki uzaklık, Kuzey kutbuyla arasındaki uzaklığa eşittir ve kuzey kutbuyla dünyanın merkezi arasındaki uzaklığa eşittir.
* Piramidin yüksekliğiyle,çevresi arasındaki oran, bir dairenin yari çapıyla çevresi arasındaki oranın dengidir. Dört kenarlar dünyanın en büyük ve çarpıcı üçgenleridir.
* Gizde'den geçen boylam, dünyanın denizleriyle anakaralarını iki eşit parçaya böler. Bu boylam ayrıca,kara üstünden geçen en uzun kuzey-güney yönlü boylam olup,bütün yer kürenin uzunluğuna ölçümünde doğal sıfır noktasını oluşturur.
* Büyük piramidin tepesi Kuzey kutbunu, çevresi ekvatorun uzunluğunu temsil eder. Ve iki uzunluk ayni mikyasa uygunluk gösterir.
Gize piramitleri tahmini olarak M.Ö 3000 yıllarında eski krallık döneminde yapıldığı zannedilmekte. Bunlar; Keops, Kefren ve Mikerinos piramitleridir ve isimlerini aldıkları firavunlar tarafından yaptırılmıştır. Gize piramitleri dünyanın en büyük piramitlerdir. Bunlarla birlikte ve Mısır'da yüzlerce irili ufaklı piramit mevcuttur. Gize piramitlerini diğerlerinden ayıran farkların başında içlerinde yazı bulunmaması ve nasıl yapıldıklarının hala çözüme ulaşmamış olmasıdır. Keops'un oğlu Kefren için yapılmış piramit 136 metre yüksekliğe sahip. Kefren piramidinin dış yüzeyinde yer alan kaplamalar bugün sadece tepesinde görülebilmekte.

Gize piramitlerinden İçi ziyaret edilebilen tek piramit olan Kefren piramidinin mezar odası.



Piramitler ile ilgili çeşitli matematiksel bulgular arasında ilginç olanları şunlar: Keops piramidinin yüksekliğinin 1 milyarla çarpımı yaklaşık olarak güneşle dünyamız arasındaki mesafeyi veriyor. (149.504.000km). Piramitlerin üzerinden geçen meridyen karaları ve denizleri tam iki eşit parçaya bölüyor. Keops Piramidinin Taban çevresinin, yüksekliğinin 2 katına bölünmesinin pi=3.14 sayısını veriyor.

62 metre yüksekliği ile Gize Piramitleri içerisinde en küçüğü olan Mikerinos Piramidi Kefren'in oğlu için yaptırılmış.

Piramitler hala yapımları esnasında ki gizi korumaktalar. İşçilerin olağanüstü bir çabayla günde 10 metreküp taşı üst üste koyduklarını kabul edersek keops piramidinde yer alan yaklaşık 2.5 milyon metreküp taş, 250.000 gün, yani yaklaşık 664 yılda yerleştirilebiliyor. Oysa piramitler 20 ila 30 yıl arasında bir sürede tamamlanmıştır.

Sfenks -


70 metre uzunluğunda ve 30 metre yüksekliğinde olan Sfenks 14.yy da Memluk'lar tarafından top bataryalarına talim hedefi olarak kullanılmış ve ciddi biçimde zarar görmüş. M.Ö. 2520 yılında Keops'un oğlu Kefren'in mezar kompleksi için yontulmuş. Sfenks Mısır dilinde 'SEZP-ANHE' Yaşayan görüntü) anlamında. Tarih boyunca Sfenks Nil nehrine bakıyor ve nehir yoluyla gelenleri karşılıyordu.

Devamı Burada!!!

Pi Sayısının Serüveni!



Pi sembolü, Yunan alfabesinin 16. harfidir. Bu harf, aynı zamanda, Yunanca çevre (çember) anlamına gelen "perimetier" kelimesinin de ilk harfidir. İsviçreli matematikçi Leonard Euler, 1737 yılında yayınladığı eserinde, daire çevresinin çapına oranı söz konusu olduğunda, bu sembolü kullandı.Leonard Euler'den önce gelen bazı matematikçiler tarafından da, bu sembol kullanılmıştır. Ancak, Leonard Euler'den sonra gelen, tüm matematikçiler bu sembolü benimseyip kullandılar.

Ayrıca, doğal logaritmanın tabanı olan 2, 71828... sayısı için, L. Euler'in kullandığı e harfi, sembol olarak bütün matematikçiler tarafından kullanılmaya başlanmış, benimsenmiştir. Gene, karekök içinde -1 imajineri için de, L. Euler ile birlikte i sembolü kullanılmaya başlanmış ve genelleşmiştir. İnsanoğlu; daire dediğimiz, kendine özgü düzgün yuvarlak şeklin farkına, tekerleğin icadından çok önceki tarihlerde varmıştır. Bu şekli, diğer insan ve hayvanların gözbebekleri ile gökyüzündeki Güneş ve Ayda görüyordu. Derken, elindeki sopa ile, kum gibi düzgün yüzeylere daire çizdi. Sonra düşündü; bazı daireler küçük, bazıları ise büyük. Görüyordu ki (sezinliyordu ki), dairenin bir ucundan öteki ucuna olan uzaklığı (çapı), büyürse, çevresi de o kadar büyüyordu. Sonra gene düşündü, cilalı taş devri insanı, artık soyutlamasını yapmıştı. Dairenin; çevresinin uzunluğu ile çapının uzunluğu orantılıydı. Çevrenin çapa oranı, daireden daireye değişmiyor, sabit kalıyordu.

Demek ki; bugünkü gösterim şekliyle, bu sabit orana dersek; Çevre/Çap = sabit. Şeklinde yazılabiliyordu. Bu oranın sabitliği anlaşıldıktan sonra, sabit oran değerinin, sayı olarak belirlenmesi gerekiyordu. Pi sayısına ait ilk bilgilerin Eski Mısırlılar'da mevcut olduğunu görüyoruz. Mısırlılar, yüzey ve hacım hesapları yaparken, sayısına ait yaklaşık değer kullanmışlardır. Eski Mısırlılar'dan kalma, bazı papirüslerin, özellikle, Rhind Papirüsünün değerlendirilmesi sonucu, daire alanı için, bugünkü gösterim şekliyle : A = [1-(1/9)]2 .R2 (1) Formülünü kullandıkları anlaşılmaktadır. (Burada R yarı çapı göstermektedir.) Bu formül, yarıçapı cinsinden düşünüldüğünde, bugünkü gösterim ve düşünce şekline göre : .r2 = (8/9)2 .R2 (2) Şeklinde yazılabilir. Burada, 1 birim yarıçaplı çember düşünerek, r ve R için bilinen değerleri yazarsak : = 4.(8/9)2 = (16/9)2 (3) Sonucu Elde edilir. Bu durumda; Eski Mısırlılar'ın, için, 4.(8/9)2 değerini kullanmış oldukları anlaşılmaktadır. (3) değerini, ondalık kesir şeklinde düşündüğümüzde : = 4.(8/9)2 = 4.(64/81) = 3,1604 (4) Elde edilir. Fakat, için bazen kısaca 3 değeriyle de yetinildiği oluyordu. Bu durumda; bugünkü gösterim şekliyle düşünüldüğünde, Eski Mısırlıların, sayısı kavramını bildikleri ve değeri için 3,160 değerini Archimides'ten 2700 yıl kadar önce kullanmış oldukları anlaşılmaktadır. Burada akla şöyle bir soru gelmektedir; Acaba, Eski Mısırlılar, sayısının bu değerini hangi düşünceler, ya da ihtiyaçlar sonucu elde edebilmişlerdir? Bu sorunun cevabı hakkında kesin bir yargıya varmak çok güçtür.

Ancak bazı hipotezler (varsayımlar) ileri sürülmektedir. Bunlar : 1) 9 birim değerine eşit bir çapla çizilmiş bir daire ile 8 birim uzunluktaki bir karenin yüzölçümleri arasındaki pratik (amprik) karşılaştırmanın bu konuda esas olarak alınacağı farz edilmiştir. Bugünkü notasyonla ; k bir katsayıyı, R daire çapını, a kare kenarını göstermek üzere yazılırsa ; k.(R/2)2 .a2 yazılabilir. Buna göre a = 8 birim, R = 9 birim kabul edilirse, sayısını temsil eden değer : k.(9/2)2 = 82 k = 82 .(2/9)2 k = 64.(4/81) ise k = (256/81) = 3,1604... elde edilir. Bu hipotez doğru ise, Eski Mısırlılar bu sonuca nasıl varmışlardır? Bunun, meşhur "Bir daireye eşdeğer kare çizmek" problemi ile ne derece bir ilişkisi vardır? Bunu bilemiyoruz. Bunun hakkında kesin bir hüküm vermek bugün için mümkün değildir. 2) Ayrıca şöyle bir varsayım da ileri sürülmüştür; sayısının değeri, M.Ö. 2800-2700 yıllarına ait, Gize Kasabası yakınlarındaki büyük Keops Piramidi'nin ölçülerine göre de hesaplanabilmektedir. Keops Piramidi üzerinde yapılan incelemeler, bu piramidin inşa edildiği tarihte, bugünkü ölçü birimi i1e 232,805 metre kenarlı bir kare tabanı olduğu ve 148,208 metre yüksekliğinde bulunduğu izlenmiştir. Tabanın Çevresi : (4x232,805) = 931,22 metre olacağından, bu çevrenin yükseklik değerinin iki katına bölünmesiyle : (931,22)/(2x148,208) = 3,14159 Sayısı beş ondalıklı yakınlıkla, sayısının bilinen değerini vermektedir. 3)

Başka bir araştırmada da; Keops Piramidinin tabanı olan karenin kenarı 440 Eski Mısır kulacı, yüksekliği de, 280 kulaç değerini vermektedir. Bu sayılara göre : için : (Taban Çevresi)/(yüksekliğin İki Katı)=(4x440)/(2x280)=22/7 Değeri elde edilir. Bu değerin, ancak İskenderiye Okulu (M.Ö. III. yüzyıl) buluşları arasında ve Archimides değeri olarak gösterilmekte olduğu hatırlanırsa, gerçeğin nereden kaynaklandığı ortaya çıkmaktadır. Özet olarak belirtecek olursak; Eski Mısır mühendis ve mimarları, kutsal anıtları olan Büyük Keops Piramidi'nin inşaası sırasında, sayısının değerini biliyorlardı. Mühendislik hizmetlerinde; sayısının değerini maharetle kullanmış oldukları sonucu elde edilmektedir.

Sonuç olarak denilebilir ki; Eski Mıısırlılar'ın, Anıt-Piramit yüksekliği için; kare tabana, çevrece eşit bir dairenin çapını almak suretiyle, adeta mistik bir sayı olan irrasyorıel sayısına büyük önem verme ihtiyacını duydukları ve bu sayede (dolaylı yoldan) bilime hizmet ettikleri görülmektedir. sayısı üzerinde, Babilliler'in çok eski zamanlardan beri kullanılan yaklaşık bir bilgiye sahip oldukları anlaşılmıştır. Genel olarak = 3 değerini kullanıyorlardı. Bazı tabletlerde nin yani = 3,125 değerine de rastlanılmıştır.

Aydın Sayılı, adı geçen eserinde, "Mezopatamyalılar'da, idealleştirilmiş çemberlerle üçgenlerdeki geometrik münasebetler aracılığıyla, çözümlenen problemlerde teorikleştirilmiş ve soyutlaştırılmış bir durum açıkça mevcuttur" der. Böyle problemlerde sonuç hesaplanırken için, 3 değerinin kullanılmış olduğunu belirtir. Bu değeri; Mezopotamyalılar takribi sonuçlar için kullanmaktaydılar. Daha iyi yaklaşık sonuçlar elde etmek istedikleri zaman = 3,125 değerini uygularlardı. Ancak nin, Mısırlılar'ınkinden ve Susa Tabletlerinin gösterdiği değerden oldukça daha iyi bir değeri, İlk önce Archimides tarafından bulunmuştur. Kaynaklar; Mezopotamyalılar'ın, yamuk alanı hesabı ile, silindir ve prizma hacim hesaplarını bildiklerini ve için de 3 değerini kullandıklarını belirtir. Fakat eski Babil çağına ait olup, Susa'da bulunmuş olan tabletlerde için kabul edilen değerin yani 3,125 olduğu anlaşılmaktadır. Kaynaklar sayısı için, ilk gerçek değerin, Archimides tarafından kullanıldığını belirtir.

Archimides; sayısının değerini hesaplamak için bir yöntem vermiş ve değerini 3 tam 1/7 ile 3 tam 10/71 arasında tespit etmiştir. Bu iki kesrin ondalık sayı olarak karşılığı 3,142 ve 3,1408 dir. Bu iki değer, sayısının, bugünkü bilinen gerçek değerine çok yakın olan bir değerdir. Ancak, Archimides'in gençlik yıllarında Mısır'da İskenderiye'de uzun bir süre öğrenim gördüğü bilinmekte. Bu öğrenim sırasında, Cona ve Erotostanes adlı iki samimi arkadaş edinmiş olur. Mısırlılar'dan Eratostanes, devrinin büyük bir matematikçisi olup; Cona da, Archimedes'in saygısını kazanmış büyük ve deneyimli bir matematikçi olarak tanınmaktadır. Archimides'in fikri yapılarının temelinde bu iki matematikçiye ait izlerin bulunduğunu belirtmek gerekir. Bu konuda diğer bir gerçek de; Archimides'in sağlığında İskenderiye'de Öklid'den ders aldığı, Öklid'in de Eski Mısır ve Mezopotamya Babil yöresinde uzun yıllar dolaşan bir matematikçi olduğu, bilinen tarihi bir gerçektir.

İskenderiyeli Tarihçi Herodot (Miladi birinci yüzyıl), metrika adlı eserinde sayısı için verdiği değer 3,58 tam 1/8 dir. Bu değer, İskenderiyeli Heron'dan sonra gelen, eski Yunan ve ortaçağ matematikçileri tarafından farklı değerlerle kullanılmıştır. İskenderiyeli Heron'un verdiği yaklaşık değerin de, Mezopotamya menşeli olması ve Mezopotamyalılar'dan alınma takribi bir sonucu temsil etmesi muhtemeldir. Nasıl bir sayısı? Örneğin : m ve n birer tam sayı olmak üzere, nin değeri m/n şeklinde yazılabilir mi? yani nin değeri rasyonel bir sayı mıdır? Başlangıcta, matematikçiler bu yönde ümitliydiler. nin bu kadar çok ondalık kısmının hesaplanmasının nedenlerinden biri de, buydu herhalde.

Matematikçiler bekliyorlardı ki, bir yerden sonra, basamaklar önceki değerlerini tekrar etsin, yani devirli bir ondalık sayı halinde yazılabilsin. Ama bu olmadı, Sonunda, 1761 yılında, İsviçre'li matematikçi Lambert, nin irrasyonel olduğunu, yani dairenin çevresi ile çapının bir ortak ölçüsü olmadığını ispatladı. Pi sayısına ait değerin, gittikçe daha fazla basamağını hesaplama tutkusunun yanısıra, matematikçilerin rüyalarına giren başka bir problemi de, daireyi kare yapma problemiydi. Bu uğraşıya, kendilerini kaptıranların önderi Anaksagoras'tır (M.Ö. 500-428) Bir ara Atina'da, zındıklıkla suçlanıp hapse atılan Anaksagoras, burada can sıkıntısından, daireyi kare yapmanın yollarını aramaya başlar. Kendisinin çözdüğünü sandığı, bazı yaklaşık sonuçlar elde edler. Daha sonra, Kilyos'lu Hippokrates (M.Ö. 5. yüzyıllın ikinci yarısı) , aşağıdaki şekilde taranmış ACBA alanının, AOB üçgenin alanına eşit olduğunu gösterir Buna benzer başka örnekler gösterir ki, belli eğrilerle sınırlanmış, bazı bölgelerin alanlarına eşit alanda kareler çizilebilir. 18. yüzyılın sonlarından başlayarak, dairenin kare yapılmasının imkansız olduğu fikri, matematikçilere hakim oldu.

Bu kuşku o kadar büyük ki, 1775 te, Paris Bilimler Akademisi, devr-i daim makinesi projeleri, açıyı pergel ve cetvel kullanarak üç eşit parçaya bölme yöntemlerinin yanısıra daireyi kare yapma yöntemlerini de, artık inceleme kararı aldı. 1775 te Euler, 1794 te Legendra, nin belki de, cebirsel bir sayı olmadığına, üstel bir sayı olması gerektiğine ilişkin inançlarını belirtirler. Fakat nin üstel olduğunun kanıtlanması için, 100 yıl beklendi. Sonunda, 1882 yılında, Alman matematikçi Lindermann, nin üstel olduğunu ispatladı. Aşağıda sayısının ilk 1000 basamağı verilmiştir. Sonsuza uzanan bu yolculuktaki çok çok ufak sayılabilecek bu 1000 basamak bile sayısının muhteşem güzelliğini gözler önüne sermeye yetmiyor mu, ne dersiniz?

3,14159265358979323846264338327950288419716939937510 58209749445923078164062862089986280348253421170679 82148086513282306647093844609550582231725359408128 48111745028410270193852110555964462294895493038196 44288109756659334461284756482337867831652712019091 45648566923460348610454326648213393607260249141273 72458700660631558817488152092096282925409171536436 78925903600113305305488204665213841469519415116094 33057270365759591953092186117381932611793105118548 07446237996274956735188575272489122793818301194912 98336733624406566430860213949463952247371907021798 60943702770539217176293176752384674818467669405132 00056812714526356082778577134275778960917363717872 14684409012249534301465495853710507922796892589235 42019956112129021960864034418159813629774771309960 51870721134999999837297804995105973173281609631859 50244594553469083026425223082533446850352619311881 71010003137838752886587533208381420617177669147303 59825349042875546873115956286388235378759375195778 18577805321712268066130019278766111959092164201989...

M.Ö. 2000 : Eski Mısırlılar = (16/9)2 = 3.1605 değerini kullanıyorlar. M.Ö. 2000 : Mezopotamyalılar Babil devrinde = değerini kullanıyorlar. M.Ö. 1200 : Çinliler = 3 değerini kullanıyorlar. M.Ö. 550 : Kutsal Kitapta (I. Krallar 7 : 23) , = 3 anlamına geliyor. M.Ô. 434 : Anaksagoras daireyi kare yapmaya girişir. M.Ô. 300 : Yılları, Archimides < < olarak ="211875/67441" batlamyos =" (377/120)" hing =" =" fau =" (142/45)" hui =" (471/150)" aryabhatta =" (62832/2000)" brahmagupta =" (m/10)" fibonacci =" 3.141818" otho =" (355/113)">

Devamı Burada!!!
Related Posts with Thumbnails
Copyright © 2009-2010 Zafer GÜVEN - İletişim ve Msn Adresi: thaibokscu@gmail.com

Site içerisindeki içerikler izinsiz kopyalanamaz, alıntı yapılamaz.Yapılacak alıntılarda sitemiz belirtilmelidir.
Matematik Günlüğü © 2008 Template by:
SkinCorner